Ендотоксин та метаболічно асоційована патологія
DOI:
https://doi.org/10.30978/MG-2020-4-80Ключові слова:
ліпополісахарид, ендотоксин, ендотоксинова агресія, неалкогольна жирова хвороба печінки, ожирінняАнотація
Висвітлено сучасні уявлення щодо ролі мікробіому кишечника в патогенетичних механізмах розвитку метаболічно асоційованих захворювань. Описано історію відкриття ендотоксину. Встановлено багатогранність властивостей ендотоксину щодо як інфекційної, так і неінфекційної патології. Представлено стресову теорію регуляції надходження кишкового ліпополісахариду в загальний кровотік і дані досліджень, які підтверджують її. Наведено також дані щодо фізіологічної ролі ліпополісахариду та його особливості залежно від віку, стресу і фізичного навантаження. Показано основні механізми розвитку ендотоксемії, зокрема роль порушення еубіозу кишкового мікробіому і підвищення кишкової проникності. Висвітлено значення печінки в первинній інактивації ендотоксину у здорових осіб. Показано роль ліпідів у транспортуванні кишкового ліпополісахариду. Описано поняття «ендотоксинова агресія» і «метаболічна ендотоксинова агресія». Установлено значення високожирової дієти в розвитку ендотоксемії, зокрема за рахунок розвитку дисбіозу. Наведено результати експериментальних робіт із введенням ліпополісахариду лабораторним тваринам. Показано, що введення ендотоксину індукує підвищення рівня прозапальних цитокінів. Описано механізми взаємодії ліпополісахариду з Toll‑подібними рецепторами і наслідки цієї взаємодії, зокрема потенціювання хронічного запалення в тканині печінки. Розкрито роль ендотоксинової агресії в процесах індукції запалення низької градації у пацієнтів з ожирінням і взаємозв’язок зі змінами кишкового мікробіому. Показано значення ліпополісахариду в розвитку інсулінорезистентності та цукрового діабету 2 типу. Наведено дані досліджень ролі ендотоксинемії в розвитку неалкогольної жирової хвороби печінки. Встановлено механізм взаємодії ліпополісахариду з клітинами печінки та його значення в прогресуванні неалкогольної жирової хвороби печінки з розвитком стеатогепатиту і фіброзу.
Посилання
Anikhovskaya IA, Kubatiev AA, Maisky IA, Markelova MM, Salakhov IM, Yakovlev MYu. [The search direction means for reducing endotoxin concentration in the general haemocirculation] [in Russian]. Pathogenesis. 2014;12(4):25-30.
Anikhovskaya IA, Kubatiev AA, Yakovlev MYu. [Endotoxin Theory of Atherosclerosis] [in Russian]. Human Physiology. 2015;(1):106.
Anikhovskaya IA, Salakhov IM, Yakovlev MYu. [Intestinal endotoxin and stress in adaptation and aging] [in Russian]. Bulletin of the Russian Academy of Natural Sciences. 2016;(1):19-24.
Okorokov PL, Anikhovskaya IA, Yakovleva MM et al. [Alimentary factor as a likely inducer of inflammation or a lipid component of the mechanism of intestinal endotoxin transport] [in Russian]. Human physiology. 2012;38(6):105.
Yakovlev MYu. [Intestinal endotoxin and inflammation. Dermatology. National leadership] [in Russian]. Brief Edition; 2013. Chapter8; 70.
Ahmad R, Rah B, Bastola D et al. Obesity-induces organ and tissue specific tight junction restructuring and barrier deregulation by claudin switching. Sci Rep. 2017;7:5125. https://doi.org/10.1038/s41598-017-04989-8.
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783-801.
Amar J, Chabo C, Waget A et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3(9). 559e72. https://doi.org/ 10.1002/emmm.201100159.
Anderson AS, Haynie KR, McMillan RP et al. Early skeletal muscle adaptations to short-term high-fat diet in humans before changes in insulin sensitivity. Obesity. 2015;23(4):720-724. https://doi.org/10.1002/oby.21031.
Anikhovskaya IA, Oparina ON, Yakovleva MM et al. Intestinal endotoxin as a universal factor of adaptation and pathogenesis of general adaptation syndrome. Human Physiology. 2006;32(2):200.
Bäckhed F, Ley RE, Sonnenburg JL et al. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915-1920.
Bauer M, Press AT, Trauner M. The liver in sepsis: patterns of response and injury. Curr Opin Crit Care. 2013;19:123-127. https://doi.org/10.1097/MCC.0b013e32835eba6d.
Betrapally NS, Gillevet PM, Bajaj JS. Gut microbiome and liver disease. Transl Res. 2017;179:49-59. https://doi.org/10.1016/j.trsl.2016.07.005.
Blanchard C, Moreau F, Chevalier J et al. Sleeve gastrectomy alters intestinal permeability in diet-induced obese mice. Obes Surg. 2017;27:2590-2598. https://doi.org/ 10.1007/s11695-017-2670-1.
Boursier J, Mueller O, Barret M et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63(3):764-775. https://doi.org/10.1002/hep.28356.
Boutagy NE, McMillan RP, Frisard MI, Hulver MW. Metabolic endotoxemia with obesity: is it real and is it relevant?. Biochimie. 2016;124:11-20. https://doi.org/ 10.1016/j.biochi.2015.06.020.
Buhl M, Bosnjak E, Vendelbo MH et al. Direct effects of locally administered lipopolysaccharide on glucose, lipid, and protein metabolism in the placebo-controlled, bilaterally infused human leg. The Journal of Clinical Endocrinology & Metabolism. 2013;98(5):2090-2099. https://doi.org/ 10.1210/jc.2012-3836.
Caesar R, Tremaroli V, Kovatcheva-Datchary P et al. Crosstalk between gut microbiota and dietary lipids aggravatesWAT inflammation through TLR signaling. Cell Metab. 2015;22(4):658-68. https://doi.org/10.1016/j.cmet.2015.07.026.
Candido TL. N., Bressan J, Alfenas R. d. C. G. Dysbiosis and metabolic endotoxemia induced by high-fat diet. Nutr Hosp. 2018;35(6):1432-1440. https://doi.org/10.20960/nh.1792.
Cani PD, Amar J, Iglesias MA et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761-1772. https://doi.org/10.2337/db06-1491.
Сani PD, Bibiloni R, Knauf C. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes. 2008;57:1470-1481.
Cani PD, Possemiers S, Van de Wiele T et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091-1103. https://doi.org/10.1136/gut.2008.165886.
Carpino G, Del Ben M, Pastori D et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology. 2019. https://doi.org/10.1002/hep.31056.
Carvalho-Filho MA, Ueno M, Hirabara SM et al. S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: A novel mechanism of insulin resistance. Diabetes. 2005;54:959-967.
Clemente-Postigo M, Queipo-Ortuño MI, Murri M et al. Endotoxin increase after fat overload is related to postprandial hypertriglyceridemia in morbidly obese patients. J Lipid Res. 2012;53(5):973-978. https://doi.org/ 10.1194/jlr.P020909.
Dandekar A, Qiu Y, Kim H et al. Toll-like receptor (TLR) signaling interacts with CREBH to modulate high-density lipoprotein (HDL) in response to bacterial endotoxin. J Biol Chem. 2016;291 (44):23149-23158. https://doi.org/10.1074/jbc.M116.755728.
Dixon AN, Valsamakis G, Hanif MW et al. Effect of the orlistat on serum endotoxin lipopolysaccharide and adipocytokines in South Asian individuals with impaired glucose tolerance. Int J Clin Pract. 2008;62(7):1124-1129. https://doi.org/10.1111/j.1742-1241.2008.01800.x.
Fang W, Xue H, Chen X et al. Supplementation with sodium butyrate modulates the composition of the gut microbiota and ameliorates high-fat diet-induced obesity in mice. J Nutr. 2019;149(5):747-754. https://doi.org/10.1093/jn/nxy324.
Fuke NO, Nagata N, Suganuma H, Ota T. Regulation of Gut Microbiota and Metabolic Endotoxemia with Dietary Factors. Nutrients. 2019;11 (10):2277. https://doi.org/10.3390/nu11102277.
Gomes JM. G., Costa J. de A., Alfenas R. de C. G. Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism. 2017;68:133-144. https://doi.org/10.1016/j.metabol.2016.12.009.
González-Quilen C, Gil-Cardoso K, Ginés I et al. Grape-Seed proanthocyanidins are able to reverse intestinal dysfunction and metabolic endotoxemia induced by a cafeteria diet in wistar rats. Nutrients. 2019;11(5):979. https://doi.org/10.3390/nu11050979.
Graf D, Di Cagno R, Fåk F et al. Contribution of diet to the composition of the human gut microbiota. Microbial Ecology in Health and Disease. 2015;26:26164. https://doi.org/ 10.3402/mehd.v26.26164.
Guo S, Nighot M, Al-Sadi R et al. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J Immunol. 2015;195:4999-5010. https://doi.org/10.4049/jimmunol.1402598.
Harte AL, Varma MC, Tripathi G et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care. 2012;35(2):375-382. https://doi.org/10.2337/ dc11-1593.
He C, Shan Y, Song W. Targeting gut microbiota as a possible therapy for diabetes. Nutr Res. 2015;35(5):361-367. https://doi.org/ 10.1016/j.nutres.2015.03.002.
Henao-Mejia J, Elinav E, Thaiss CA, Flavell RA. Inflammasomes and metabolic disease. Ann Rev Physiol. 2014;76:57e78. https://doi.org/10.1146/annurev-physiol-021113-170324.
Hersoug L-G., Møller P, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev. 2016;17:297-312. https://doi.org/10.1111/obr.12370.
Heymann F, Tacke F. Immunology in the liver — from homeostasis to disease. Nat Rev Gastroenterol Hepatol. 2016;13:88-110. https://doi.org/10.1038/nrgastro.2015.200.
Imajo K, Fujita K, Yoneda M et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 2012;16(1):44-54. https://doi.org/10.1016/j.cmet.2012.05.012.
Kapur S, Picard F, Perreault M et al. Nitric oxide: A new player in the modulation of energy metabolism. Int J Obes Relat Metab Disord. 2000;24:S36–S40. https://doi.org/10.1038/sj.ijo.0801502.
Kim HI, Kim J.-K., Kim J.-Y. et al. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice. Nutr Res. 2019;67:78-89. https://doi.org/ 10.1016/j.nutres.2019.03.008.
Kudo H, Takahara T, Yata Y et al. Lipopolysaccharide triggered TNF-alpha-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. J Hepatol. 2009;51:168-175. https://doi.org/ 10.1016/j.jhep.2009.02.032.
Laflamme N, Rivest S. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J. 2001;15:155-163.
Lassenius MI, Pietilainen KH, Kaartinen K et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care. 2011;34(8):1809-1815. https://doi.org/10.2337/dc10-2197.
Laugerette F, Vors C, Géloën A et al. Emulsified lipids increase endotoxemia: Possible role in early postprandial low-grade inflammation. J Nutr Biochem. 2011;22:53-59. https://doi.org/10.1016/j.jnutbio.2009.11.011.
Leocádio PC. L., Oriá RB, Crespo-Lopez ME, Alvarez-Leite JI. Obesity: more than an inflammatory, an infectious disease?. Front Immunol. 2020;10:3092. https://doi.org/ 10.3389/fimmu.2019.03092.
Levels JH. M., Marquart JA, Abraham PR et al. Lipopolysaccharide is transferred from high-density to low-density lipoproteins by lipopolysaccharide-binding protein and phospholipid transfer protein. Infect. Immun. 2005;73(4):2321-2326. https://doi.org/10.1128/IAI.73.4.2321-2326.2005.
Loubinoux J, Mory F, Pereira IA, Le Faou AE. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J Clin Microbiol. 2000;38:931-934.
Mehta NN, Heffron SP, Patel PN et al. A human model of inflammatory cardio-metabolic dysfunction; a double blind placebo-controlled crossover trial. J Transl Med. 2012;10:124. https://doi.org/10.1186/1479-5876-10-124.
Miura K, Ohnishi Н. Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20 (23):7381-7391.
Mohamed J, Nazratun Nafizah AH, Zariyantey AH, Budin S. B. Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. J Sultan Qaboos Univ Med. 2016;16:e132–e141. https://doi.org/10.18295/squmj.2016.16.02.002.
Murakami Y, Tanabe S, Suzuki T. High-fat diet-induced intestinal hyperpermeability is associated with increased bile acids in the large intestine of mice. J Food Sci. 2016;81:H216–H222. https://doi.org/10.1111/1750-3841.13166.
Muscogiuri G, Cantone E, Cassarano S et al. Gut microbiota: a new path to treat obesity. Int J Obes Suppl. 2019;9:10-19. https://doi.org/10.1038/s41367-019-0011-7.
Mouzaki M, Comelli EM, Arendt BM et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology. 2013;58(1):120-127. https://doi.org/10.1002/hep.26319.
Patel PN, Shah RY, Ferguson JF, Reilly MP. Human experimental endotoxemia in modeling the pathophysiology, genomics, and therapeutics of innate immunity in complex cardiometabolic diseases. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015;35(3):525-534. https://doi.org/10.1161/ATVBAHA.114.304455.
Petersen C, Bell R, Klag KA et al. T cell-mediated regulation of the microbiota protects against obesity. Science. 2019;365. e9351. https://doi.org/10.1126/science.aat9351.
Poggi M, Bastelica D, Gual P et al. C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia. 2007;50:1267-1276.
Radilla-Vázquez RB, Parra-Rojas I, Martínez-Hernández NE et al. Gut microbiota and metabolic endotoxemia in young obese mexican subjects. Obes Facts. 2016;9:1-11. https://doi.org/10.1159/000442479.
Rietschel E, Westphal O. Endotoxin: Historical perspectives. Endotoxin in Health and Disease / Ed by H Bode, S Opal, S Vogel, D Morrison. New York; Basel, 1999:1.
Ruiz AG, Casafont F, Crespo J et al. Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of nonalcoholic steatohepatitis. Obes Surg. 2007;7 (10):1374-1380.
Ryu JK, Kim SJ, Rah SH et al. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity. 2017;46(1):38-50. https://doi.org/10.1016/j.immuni.2016.11.007.
Saberi M, Woods NB, de Luca C et al. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab. 2009;10:419-29.
Scott KP, Gratz SW, Sheridan PO et al. The influence of diet on the gut microbiota. Pharmacological Research. 2013;69(1):52-60. https://doi.org/10.1016/j.phrs.2012.10.020.
Selye H. Stress in Health and Disease. Boston: Butterworths, 1976. 1256 р.
Shao B, Munford RS, Kitchens R, Varley AW. Hepatic uptake and deacylation of the LPS in bloodborne LPS-lipoprotein complexes. Innate Immun. 2012;18:825-833. https://doi.org/10.1177/1753425912442431.
Song MJ, Kim KH, Yoon JM, Kim JB. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem. Biophys Res Commun. 2006;346:739-745.
Takeda K, Akira S. TLR signaling pathways. Semin. Immunol. 2004;16:3-9.
Tarasenko TN, McGuire PJ. The liver is a metabolic and immunologic organ: a reconsideration of metabolic decompensation due to infection in inborn errors of metabolism (IEM). Mol Genet Metab. 2017;121:283-288. https://doi.org/10.1016/j.ymgme.2017.06.010.
Vallianou NG, Stratigou T, Tsagarakis S. Microbiome and diabetes: Where are we now?. Diabetes Res Clin Pract. 2018;146:111-118. https://doi.org/ 10.1016/j.diabres.2018.10.008.
Vergès B, Duvillard L, Lagrost L et al. Changes in lipoprotein kinetics associated with type 2 diabetes affect the distribution of lipopolysaccharides among lipoproteins. J Clin Endocrinol Metab. 2014;99:E1245–E1253. https://doi.org/10.1210/jc.2013-3463.
Vijay-Kumar M, Aitken JD, Carvalho FA et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328 (5975):228-231. https://doi.org/ 10.1126/science.1179721.
Wang F, Zhang C, Zeng Q. Gut microbiota and immunopathogen¬esis of diabetes mellitus type 1 and 2. Front Biosci. 2016;21(5):900-906. https://doi.org/10.2741/4427.
Weglarz L, Dzierzewicz Z, Skop B et al. Desulfovibrio desulfuricans lipopolysaccharides induce endothelial cell IL-6 and IL-8 secretion and E-selectin and VCAM-1 expression. Cell Mol Biol Lett. 2003;8:991-1003.
Xiao S, Fei N, Pang X et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol. 2014;87(2):357-367. https://doi.org/10.1111/1574-6941.12228.
Yao Z, Mates JM, Cheplowitz AM et al. Blood-borne lipopolysaccharide is rapidly eliminated by liver sinusoidal endothelial cells via high-density lipoprotein. J Immunol. 2016;197:2390-2399. https://doi.org/10.4049/jimmunol.1600702.