Патогенетична роль мітохондрій при гострому панкреатиті. Огляд

Автор(и)

DOI:

https://doi.org/10.30978/MG-2025-4-50

Ключові слова:

гострий панкреатит, мітохондріальна дисфункція, ацинарні клітини

Анотація

Гострий панкреатит — серйозна медична проблема з високим показником смертності, особливо при тяжких формах (20 — 30%), яка при розвитку поліорганної недостатності може перевищувати 50%. Така висока летальність свідчить про нагальну потребу в поглибленому дослідженні патогенетичних механізмів для визначення нових терапевтичних мішеней і розробки ефективніших методів лікування. У цьому контексті мітохондріальна дисфункція, яку визнано одним із ключових ініціювальних чинників ушкодження клітин підшлункової залози й розвитку системної запальної відповіді, становить особливий інтерес та є актуальним напрямом сучасних досліджень.

Мета — проаналізувати та узагальнити сучасні дані щодо патогенетичної ролі мітохондріальної дисфункції в розвитку гострого панкреатиту, зокрема її вплив на клітинний гомеостаз, окисний стрес, програмовану клітинну смерть і розвиток системної запальної відповіді.

Матеріали та методи. Стаття є оглядом наукової літератури, присвяченої патогенезу гострого панкреатиту та ролі мітохондріальної дисфункції. Проведено аналіз публікацій із міжнародних наукових баз даних PubMed, Scopus, Web of Science щодо ключових механізмів, пов’язаних із мітохондріями при гострому панкреатиті (порушення енергетичного гомеостазу, окисний стрес, кальцієва дисрегуляція, активація апоптозу та формування мітохондріальних пор перехідної проникності).

Результати. Аналіз показав, що мітохондріальна дисфункція є одним з найбільш ранніх та критичних патогенетичних механізмів при гострому панкреатиті, що ініціюється вже на початкових етапах захворювання в ацинарних клітинах підшлункової залози. Ключові виявлені порушення — зниження продукції АТФ унаслідок пошкодження дихального ланцюга, надмірне утворення активних форм кисню та розвиток окисного стресу, порушення кальцієвого гомеостазу, що спричиняє цитотоксичність, активацію мітохондріального шляху апоптозу через вивільнення проапоптотичних факторів і формування мітохондріальних пор перехідної проникності, що призводить до втрати потенціалу мембрани й клітинної загибелі. Показано, що пошкоджені мітохондрії та їхні компоненти (DAMPs) вивільняються в кровотік, підсилюючи системну запальну відповідь і спричиняючи розвиток поліорганної недостатності.

Висновки. Мітохондріальна дисфункція є центральною ланкою в патогенезі гострого панкреатиту, що відіграє ключову роль у локальному пошкодженні підшлункової залози та розвитку системних ускладнень. Розуміння цих механізмів відкриває перспективи для розробки терапевтичних стратегій, спрямованих на захист і відновлення мітохондріальної функції для поліпшення результатів лікування пацієнтів із гострим панкреатитом.

 

Біографії авторів

С. М. Чуклін, Медичний центр Святої Параскеви, Львів

д. мед. н., проф.

С. С. Чуклін, Медичний центр Святої Параскеви, Львів

лікар-хірург

Посилання

Abogresha NM, Greish SM, Abdelaziz EZ, Khalil WF. Remote effect of kidney ischemia-reperfusion injury on pancreas: role of oxidative stress and mitochondrial apoptosis. Arch Med Sci. 2016 Apr 1;12(2):252-62. http://doi.org/10.5114/aoms.2015.48130. Epub 2015 Mar 23. PMID: 27186168.

Adebayo M, Singh S, Singh AP, Dasgupta S. Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis. FASEB J. 2021 Jun;35(6):e21620. http://doi.org/10.1096/fj.202100067R. PMID: 34048084.

Armstrong JA, Cash NJ, Ouyang Y, Morton JC, Chvanov M, Latawiec D, Awais M, Tepikin AV, Sutton R, Criddle DN. Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift. J Biol Chem. 2018 May 25;293(21):8032-8047. http://doi.org/10.1074/jbc.RA118.003200. Epub 2018 Apr 6. PMID: 29626097.

Bi YW, Li LS, Ru N, Zhang B, Lei X. Nicotinamide adenine dinucleotide phosphate oxidase in pancreatic diseases: Mechanisms and future perspectives. World J Gastroenterol. 2024 Feb 7;30(5):429-439. http://doi.org/10.3748/wjg.v30.i5.429. PMID: 38414585.

Biczo G, Vegh ET, Shalbueva N, Mareninova OA, Elperin J, Lotshaw E, Gretler S, Lugea A, Malla SR, Dawson D, Ruchala P, Whitelegge J, French SW, Wen L, Husain SZ, Gorelick FS, Hegyi P, Rakonczay Z Jr, Gukovsky I, Gukovskaya AS. Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models. Gastroenterology. 2018 Feb;154(3):689-703. http://doi.org/10.1053/j.gastro.2017.10.012. Epub 2017 Oct 23. PMID: 29074451.

Bruce JIE, Sánchez-Alvarez R, Sans MD, Sugden SA, Qi N, James AD, Williams JA. Insulin protects acinar cells during pancreatitis by preserving glycolytic ATP supply to calcium pumps. Nat Commun. 2021 Jul 19;12(1):4386. http://doi.org/10.1038/s41467-021-24506-w. PMID: 34282152.

Cabral A, Cabral JE, Wang A, Zhang Y, Liang H, Nikbakht D, Corona L, Hoffman HM, McNulty R. Differential Binding of NLRP3 to non-oxidized and Ox-mtDNA mediates NLRP3 Inflammasome Activation. Commun Biol. 2023 May 30;6(1):578. http://doi.org/10.1038/s42003-023-04817-y. PMID: 37253813.

Chen L, Zhang Q, Meng Y, Zhao T, Mu C, Fu C, Deng C, Feng J, Du S, Liu W, Geng G, Ma K, Cheng H, Liu Q, Luo Q, Zhang J, Du Z, Cao L, Wang H, Liu Y, Lin J, Chen G, Liu L, Lam SM, Shui G, Zhu Y, Chen Q. Saturated fatty acids increase LPI to reduce FUNDC1 dimerization and stability and mitochondrial function. EMBO Rep. 2023 Apr 5;24(4):e54731. http://doi.org/10.15252/embr.202254731. Epub 2023 Feb 27. PMID: 36847607.

Chen W, Imasaka M, Iwama H, Nishiura H, Ohmuraya M. Double deficiency of cathepsin B and L in the mouse pancreas alters trypsin activity without affecting acute pancreatitis severity. Pancreatology. 2022 Nov;22(7):880-886. http://doi.org/10.1016/j.pan.2022.08.011. Epub 2022 Aug 23. PMID: 36038449.

Choi J, Oh TG, Jung HW, Park KY, Shin H, Jo T, Kang DS, Chanda D, Hong S, Kim J, Hwang H, Ji M, Jung M, Shoji T, Matsushima A, Kim P, Mun JY, Paik MJ, Cho SJ, Lee IK, Whitcomb DC, Greer P, Blobner B, Goodarzi MO, Pandol SJ, Rotter JI; North American Pancreatitis Study 2 (NAPS2) Consortium; Fan W, Bapat SP, Zheng Y, Liddle C, Yu RT, Atkins AR, Downes M, Yoshihara E, Evans RM, Suh JM. Estrogen-Related Receptor γ Maintains Pancreatic Acinar Cell Function and Identity by Regulating Cellular Metabolism. Gastroenterology. 2022 Jul;163(1):239-256. http://doi.org/10.1053/j.gastro.2022.04.013. Epub 2022 Apr 21. PMID: 35461826.

Chvanov M, Voronina S, Zhang X, Telnova S, Chard R, Ouyang Y, Armstrong J, Tanton H, Awais M, Latawiec D, Sutton R, Criddle DN, Tepikin AV. Knockout of the Mitochondrial Calcium Uniporter Strongly Suppresses Stimulus-Metabolism Coupling in Pancreatic Acinar Cells but Does Not Reduce Severity of Experimental Acute Pancreatitis. Cells. 2020 Jun 5;9(6):1407. http://doi.org/10.3390/cells9061407. PMID: 32516955; PMCID: PMC7349284.

Criddle DN. Reactive oxygen species, Ca(2+) stores and acute pancreatitis; a step closer to therapy? Cell Calcium. 2016 Sep;60(3):180-9. http://doi.org/10.1016/j.ceca.2016.04.007. Epub 2016 Apr 30. PMID: 27229361.

Cui Q, Liu HC, Liu WM, Ma F, Lv Y, Ma JC, Wu RQ, Ren YF. Milk fat globule epidermal growth factor 8 alleviates liver injury in severe acute pancreatitis by restoring autophagy flux and inhibiting ferroptosis in hepatocytes. World J Gastroenterol. 2024 Feb 21;30(7):728-741. http://doi.org/10.3748/wjg.v30.i7.728. PMID: 38515944.

Cui Q, Wang W, Shi J, Lai F, Luo S, Du Y, Wang X, Xiang Y. Glycyrrhizin Ameliorates Cardiac Injury in Rats with Severe Acute Pancreatitis by Inhibiting Ferroptosis via the Keap1/Nrf2/HO-1 Pathway. Dig Dis Sci. 2024 Jul;69(7):2477-2487. http://doi.org/10.1007/s10620-024-08398-6. Epub 2024 May 16. PMID: 38753240.

de Oliveira C, Khatua B, Noel P, Kostenko S, Bag A, Balakrishnan B, Patel KS, Guerra AA, Martinez MN, Trivedi S, McCullough A, Lam-Himlin DM, Navina S, Faigel DO, Fukami N, Pannala R, Phillips AE, Papachristou GI, Kershaw EE, Lowe ME, Singh VP. Pancreatic triglyceride lipase mediates lipotoxic systemic inflammation. J Clin Invest. 2020 Apr 1;130(4):1931-1947. http://doi.org/10.1172/JCI132767. PMID: 31917686.

Dixit A, Cheema H, George J, Iyer S, Dudeja V, Dawra R, Saluja AK. Extracellular release of ATP promotes systemic inflammation during acute pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2019 Oct 1;317(4):G463-G475. http://doi.org/10.1152/ajpgi.00395.2018. Epub 2019 Aug 21. PMID: 31433214.

Ezzat GM, Nageb SM, Haredi MA, El-Masry MA. Mitochondrial DNA Copy Number, a Damage-Associated Molecular Pattern Molecule, Can Predict Pancreatic Necrosis and Is Correlated with the Severity of Acute Pancreatitis. Dig Dis Sci. 2023 Nov;68(11):4175-4185. http://doi.org/10.1007/s10620-023-08049-2. Epub 2023 Sep 7. PMID: 37676630.

Fu Y, Ricciardiello F, Yang G, Qiu J, Huang H, Xiao J, Cao Z, Zhao F, Liu Y, Luo W, Chen G, You L, Chiaradonna F, Zheng L, Zhang T. The Role of Mitochondria in the Chemoresistance of Pancreatic Cancer Cells. Cells. 2021 Feb 25;10(3):497. http://doi.org/10.3390/cells10030497. PMID: 33669111.

Glover HL, Schreiner A, Dewson G, Tait SWG. Mitochondria and cell death. Nat Cell Biol. 2024 Sep;26(9):1434-1446. http://doi.org/10.1038/s41556-024-01429-4. Epub 2024 Jun 20. PMID: 38902422.

Green DR. The Mitochondrial Pathway of Apoptosis: Part I: MOMP and Beyond. Cold Spring Harb Perspect Biol. 2022 May 27;14(5):a041038. http://doi.org/10.1101/cshperspect.a041038. PMID: 3562379.

Habtezion A, Gukovskaya AS, Pandol SJ. Acute Pancreatitis: A Multifaceted Set of Organelle and Cellular Interactions. Gastroenterology. 2019 May;156(7):1941-1950. http://doi.org/10.1053/j.gastro.2018.11.082. Epub 2019 Jan 18. PMID: 30660726; PMCID: PMC6613790.

Hamesch K, Hollenbach M, Guilabert L, Lahmer T, Koch A. Practical management of severe acute pancreatitis. Eur J Intern Med. 2025 Mar;133:1-13. http://doi.org/10.1016/j.ejim.2024.10.030. Epub 2024 Nov 29. PMID: 39613703.

Hong WL, Huang H, Zeng X, Duan CY. Targeting mitochondrial quality control: new therapeutic strategies for major diseases. Mil Med Res. 2024 Aug 21;11(1):59. http://doi.org/10.1186/s40779-024-00556-1. PMID: 39164792.

Hu Z, Wang D, Gong J, Li Y, Ma Z, Luo T, Jia X, Shi Y, Song Z. MSCs Deliver Hypoxia-Treated Mitochondria Reprogramming Acinar Metabolism to Alleviate Severe Acute Pancreatitis Injury. Adv Sci (Weinh). 2023 Sep;10(25):e2207691. http://doi.org/10.1002/advs.202207691. Epub 2023 Jul 6. PMID: 37409821; PMCID: PMC10477874.

Javed MA, Wen L, Awais M, Latawiec D, Huang W, Chvanov M, Schaller S, Bordet T, Michaud M, Pruss R, Tepikin A, Criddle D, Sutton R. TRO40303 Ameliorates Alcohol-Induced Pancreatitis Through Reduction of Fatty Acid Ethyl Ester-Induced Mitochondrial Injury and Necrotic Cell Death. Pancreas. 2018 Jan;47(1):18-24. http://doi.org/10.1097/MPA.0000000000000953. PMID: 29200128.

Jin H, Zhao K, Li J, Xu Z, Liao S, Sun S. Matrine alleviates oxidative stress and ferroptosis in severe acute pancreatitis-induced acute lung injury by activating the UCP2/SIRT3/PGC1α pathway. Int Immunopharmacol. 2023 Apr;117:109981. http://doi.org/10.1016/j.intimp.2023.109981. Epub 2023 Mar 8. PMID: 37012871.

Kiss L, Fűr G, Pisipati S, Rajalingamgari P, Ewald N, Singh V, Rakonczay Z Jr. Mechanisms linking hypertriglyceridemia to acute pancreatitis. Acta Physiol (Oxf). 2023 Mar;237(3):e13916. http://doi.org/10.1111/apha.13916. Epub 2023 Jan 13. PMID: 36599412.

Komara NL, Paragomi P, Greer PJ, Wilson AS, Breze C, Papachristou GI, Whitcomb DC. Severe acute pancreatitis: capillary permeability model linking systemic inflammation to multiorgan failure. Am J Physiol Gastrointest Liver Physiol. 2020 Nov 1;319(5):G573-G583. http://doi.org/10.1152/ajpgi.00285.2020. Epub 2020 Sep 2. PMID: 32877220.

Kowalczyk P, Sulejczak D, Kleczkowska P, Bukowska-Ośko I, Kucia M, Popiel M, Wietrak E, Kramkowski K, Wrzosek K, Kaczyńska K. Mitochondrial Oxidative Stress — A Causative Factor and Therapeutic Target in Many Diseases. Int J Mol Sci. 2021 Dec 13;22(24):13384. http://doi.org/10.3390/ijms222413384. PMID: 34948180.

Kuliaviene I, Baniene R, Virketyte S, Kincius M, Jansen E, Gulbinas A, Kupcinskas L, Trumbeckaite S, Borutaite V. Methylene blue attenuates mitochondrial dysfunction of rat kidney during experimental acute pancreatitis. J Dig Dis. 2016 Mar;17(3):186-92. http://doi.org/10.1111/1751-2980.12328. PMID: 26861116.

Lee J, Lim JW, Kim H. Lycopene Inhibits Oxidative Stress-Mediated Inflammatory Responses in Ethanol/Palmitoleic Acid-Stimulated Pancreatic Acinar AR42J Cells. Int J Mol Sci. 2021 Feb 20;22(4):2101. http://doi.org/10.3390/ijms22042101. PMID: 33672594.

Lei Y, Yang HY, Meng N, Qin YY, Xu MT, Xiang XL, Liu L, Tang GD. Mitochondrial calcium uniporter promotes mitophagy by regulating the PINK1/Parkin pathway in caerulein treated pancreatic ductal epithelial cells in vitro. Exp Ther Med. 2024 Feb 19;27(4):147. http://doi.org/10.3892/etm.2024.12435. eCollection 2024 Apr. PMID: 38476889.

Li CL, Jiang M, Pan CQ, Li J, Xu LG. The global, regional, and national burden of acute pancreatitis in 204 countries and territories, 1990-2019. BMC Gastroenterol. 2021 Aug 25;21(1):332. http://doi.org/10.1186/s12876-021-01906-2. PMID: 34433418.

Li T, Qin C, Zhao B, Li Z, Zhao Y, Lin C, Wang W. Global and regional burden of pancreatitis: epidemiological trends, risk factors, and projections to 2050 from the global burden of disease study 2021. BMC Gastroenterol. 2024 Nov 8;24(1):398. http://doi.org/10.1186/s12876-024-03481-8. PMID: 39511469; PMCID: PMC11545908.

Li X, Guan L, Liu Z, Du Z, Yuan Q, Zhou F, Yang X, Lv M, Lv L. Ubiquitination of ATAD3A by TRIM25 exacerbates cerebral ischemia-reperfusion injury via regulating PINK1/Parkin signaling pathway-mediated mitophagy. Free Radic Biol Med. 2024 Nov 1;224:757-769. http://doi.org/10.1016/j.freeradbiomed.2024.09.029. Epub 2024 Sep 20. PMID: 39307194.

Li X, Wang T, Zhou Q, Li F, Liu T, Zhang K, Wen A, Feng L, Shu X, Tian S, Liu Y, Gao Y, Xia Q, Xin G, Huang W. Isorhamnetin Alleviates Mitochondrial Injury in Severe Acute Pancreatitis via Modulation of KDM5B/HtrA2 Signaling Pathway. Int J Mol Sci. 2024 Mar 28;25(7):3784. http://doi.org/10.3390/ijms25073784. PMID: 38612598.

Liou GY, Döppler H, DelGiorno KE, Zhang L, Leitges M, Crawford HC, Murphy MP, Storz P. Mutant KRas-Induced Mitochondrial Oxidative Stress in Acinar Cells Upregulates EGFR Signaling to Drive Formation of Pancreatic Precancerous Lesions. Cell Rep. 2016 Mar 15;14(10):2325-36. http://doi.org/10.1016/j.celrep.2016.02.029. Epub 2016 Mar 3. PMID: 26947075.

Liu H, Han W, Zhu S, Li Z, Liu C. Effect of DEHP and DnOP on mitochondrial damage and related pathways of Nrf2 and SIRT1/PGC-1α in HepG2 cells. Food Chem Toxicol. 2021 Dec;158:112696. http://doi.org/10.1016/j.fct.2021.112696. Epub 2021 Nov 23. PMID: 34822940.

Liu Q, Zhu X, Guo S. From pancreas to lungs: The role of immune cells in severe acute pancreatitis and acute lung injury. Immun Inflamm Dis. 2024 Jul;12(7):e1351. http://doi.org/10.1002/iid3.1351. PMID: 39023414.

Liu W, Du JJ, Li ZH, Zhang XY, Zuo HD. Liver injury associated with acute pancreatitis: The current status of clinical evaluation and involved mechanisms. World J Clin Cases. 2021 Dec 6;9(34):10418-10429. http://doi.org/10.12998/wjcc.v9.i34.10418. PMID: 35004974.

Liu W, Ren Y, Wang T, Wang M, Xu Y, Zhang J, Bi J, Wu Z, Zhang Y, Wu R. Blocking CIRP protects against acute pancreatitis by improving mitochondrial function and suppressing pyroptosis in acinar cells. Cell Death Discov. 2024 Mar 27;10(1):156. http://doi.org/10.1038/s41420-024-01923-6. PMID: 38538578.

Lu P, Zheng H, Meng H, Liu C, Duan L, Zhang J, Zhang Z, Gao J, Zhang Y, Sun T. Mitochondrial DNA induces nucleus pulposus cell pyroptosis via the TLR9-NF-κB-NLRP3 axis. J Transl Med. 2023 Jun 15;21(1):389. http://doi.org/10.1186/s12967-023-04266-5. PMID: 37322517.

Luo T, Tang Y, Xie W, Ma Z, Gong J, Zhang Y, Yang T, Jia X, Zhou J, Hu Z, Han L, Wang Q, Song Z. Cerium-based nanoplatform for severe acute pancreatitis: Achieving enhanced anti-inflammatory effects through calcium homeostasis restoration and oxidative stress mitigation. Mater Today Bio. 2025 Jan 13;31:101489. http://doi.org/10.1016/j.mtbio.2025.101489. eCollection 2025 Apr. PMID: 39906206.

Luo Y, Li Z, Ge P, Guo H, Li L, Zhang G, Xu C, Chen H. Comprehensive Mechanism, Novel Markers and Multidisciplinary Treatment of Severe Acute Pancreatitis-Associated Cardiac Injury — A Narrative Review.J Inflamm Res. 2021 Jul 12;14:3145-3169. http://doi.org/10.2147/JIR.S310990. eCollection 2021. PMID: 34285540.

Luo ZL, Sun HY, Wu XB, Cheng L, Ren JD. Epigallocatechin-3-gallate attenuates acute pancreatitis induced lung injury by targeting mitochondrial reactive oxygen species triggered NLRP3 inflammasome activation. Food Funct. 2021 Jun 21;12(12):5658-5667. http://doi.org/10.1039/d1fo01154e. PMID: 34018522.

Ma D, Jiang P, Jiang Y, Li H, Zhang D. Effects of Lipid Peroxidation-Mediated Ferroptosis on Severe Acute Pancreatitis-Induced Intestinal Barrier Injury and Bacterial Translocation. Oxid Med Cell Longev. 2021 Jun 22;2021:6644576. http://doi.org/10.1155/2021/6644576. eCollection 2021. PMID: 34257815.

Ma D, Li C, Jiang P, Jiang Y, Wang J, Zhang D. Inhibition of Ferroptosis Attenuates Acute Kidney Injury in Rats with Severe Acute Pancreatitis. Dig Dis Sci. 2021 Feb;66(2):483-492. http://doi.org/10.1007/s10620-020-06225-2. Epub 2020 Mar 27. PMID: 32219613.

Mahapatra SJ, Garg PK. Organ Failure and Prediction of Severity in Acute Pancreatitis. Gastroenterol Clin North Am. 2025 Mar;54(1):1-19. http://doi.org/10.1016/j.gtc.2024.09.001. Epub 2024 Nov 9. PMID: 39880521.

Manhas N, Sneyd J, Pardasani KR. Modelling the transition from simple to complex Ca2+ oscillations in pancreatic acinar cells. J Biosci. 2014 Jun;39(3):463-84. http://doi.org/10.1007/s12038-014-9430-3. PMID: 24845510.

Manhas N. Computational Model of Complex Calcium Dynamics: Store Operated Ca2+ Channels and Mitochondrial Associated Membranes in Pancreatic Acinar Cells. Cell Biochem Biophys. 2025 Mar;83(1):519-535. http://doi.org/10.1007/s12013-024-01484-6. Epub 2024 Sep 13. PMID: 39266873.

Mederos MA, Reber HA, Girgis MD. Acute Pancreatitis: A Review. JAMA. 2021 Jan 26;325(4):382-390. http://doi.org/10.1001/jama.2020.20317. PMID: 33496779.

Mihoc T, Latcu SC, Secasan CC, Dema V, Cumpanas AA, Selaru M, Pirvu CA, Valceanu AP, Zara F, Dumitru CS, Novacescu D, Pantea S. Pancreatic Morphology, Immunology, and the Pathogenesis of Acute Pancreatitis. Biomedicines. 2024 Nov 17;12(11):2627. http://doi.org/10.3390/biomedicines12112627. PMID: 39595191.

Molnár T, Pallagi P, Tél B, Király R, Csoma E, Jenei V, Varga Z, Gogolák P, Odile Hueber A, Máté Z, Erdélyi F, Szabó G, Pettkó-Szandtner A, Bácsi A, Virág L, Maléth J, Koncz G. Caspase-9 acts as a regulator of necroptotic cell death. FEBS J. 2021 Nov;288(22):6476-6491. http://doi.org/10.1111/febs.15898. Epub 2021 May 8. PMID: 33899329.

Mukherjee R, Mareninova OA, Odinokova IV, Huang W, Murphy J, Chvanov M, Javed MA, Wen L, Booth DM, Cane MC, Awais M, Gavillet B, Pruss RM, Schaller S, Molkentin JD, Tepikin AV, Petersen OH, Pandol SJ, Gukovsky I, Criddle DN, Gukovskaya AS, Sutton R; NIHR Pancreas Biomedical Research Unit. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut. 2016 Aug;65(8):1333-46. http://doi.org/10.1136/gutjnl-2014-308553. Epub 2015 Jun 12. PMID: 26071131.

Nassar TI, Qunibi WY. AKI Associated with Acute Pancreatitis. Clin J Am Soc Nephrol. 2019 Jul 5;14(7):1106-1115. http://doi.org/10.2215/CJN.13191118. Epub 2019 May 22. PMID: 31118209.

Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci. 2020 Jun 3;21(11):4005. http://doi.org/10.3390/ijms21114005. PMID: 32503336.

Pandol SJ, Gottlieb RA. Calcium, mitochondria and the initiation of acute pancreatitis. Pancreatology. 2022 Nov;22(7):838-845. http://doi.org/10.1016/j.pan.2022.07.011. Epub 2022 Aug 3. PMID: 35941013.

Park MK, Ashby MC, Erdemli G, Petersen OH, Tepikin AV. Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J. 2001 Apr 17;20(8):1863-74. http://doi.org/10.1093/emboj/20.8.1863. PMID: 11296220.

Peng Y, Yang Y, Li Y, Shi T, Xu N, Liu R, Luan Y, Yao Y, Yin C. Mitochondrial (mt)DNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling promotes pyroptosis of macrophages via interferon regulatory factor (IRF)7/IRF3 activation to aggravate lung injury during severe acute pancreatitis. Cell Mol Biol Lett. 2024 Apr 27;29(1):61. http://doi.org/10.1186/s11658-024-00575-9. PMID: 38671352.

Pokhrel S, Heo G, Mathews I, Yokoi S, Matsui T, Mitsutake A, Wakatsuki S, Mochly-Rosen D. A hidden cysteine in Fis1 targeted to prevent excessive mitochondrial fission and dysfunction under oxidative stress. Nat Commun. 2025 May 6;16(1):4187. http://doi.org/10.1038/s41467-025-59434-6. PMID: 40328741.

Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022 Oct 12;12:985363. http://doi.org/10.3389/fonc.2022.985363. eCollection 2022. PMID: 36313628.

Rius-Pérez S, Pérez S, Toledano MB, Sastre J. p53 drives necroptosis via downregulation of sulfiredoxin and peroxiredoxin 3. Redox Biol. 2022 Oct;56:102423. http://doi.org/10.1016/j.redox.2022.102423. Epub 2022 Aug 20. PMID: 36029648; PMCID: PMC9428851.

Rosca MG, Vazquez EJ, Chen Q, Kerner J, Kern TS, Hoppel CL. Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes. 2012 Aug;61(8):2074-83. http://doi.org/10.2337/db11-1437. Epub 2012 May 14. PMID: 22586586.

Saluja A, Dudeja V, Dawra R, Sah RP. Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology. 2019 May;156(7):1979-1993. http://doi.org/10.1053/j.gastro.2019.01.268. Epub 2019 Feb 15. PMID: 30776339.

Santofimia-Castaño P, Lan W, Bintz J, Gayet O, Carrier A, Lomberk G, Neira JL, González A, Urrutia R, Soubeyran P, Iovanna J. Inactivation of NUPR1 promotes cell death by coupling ER-stress responses with necrosis. Sci Rep. 2018 Nov 19;8(1):16999. http://doi.org/10.1038/s41598-018-35020-3. PMID: 30451898.

Shen S, Li B, Dai J, Wu Z, He Y, Wen L, Wang X, Hu G. BRD4 Inhibition Protects Against Acute Pancreatitis Through Restoring Impaired Autophagic Flux. Front Pharmacol. 2020 May 8;11:618. http://doi.org/10.3389/fphar.2020.00618. eCollection 2020. PMID: 32457617.

Shen Y, Wang H, Xie H, Zhang J, Ma Q, Wang S, Yuan P, Xue H, Hong H, Fan S, Xu W, Xie Z. l-arginine promotes angio-osteogenesis to enhance oxidative stress-inhibited bone formation by ameliorating mitophagy. J Orthop Translat. 2024 May 21;46:53-64. http://doi.org/10.1016/j.jot.2024.03.003. eCollection 2024 May. PMID: 38808262.

Shen Y, Wen L, Zhang R, Wei Z, Shi N, Xiong Q, Xia Q, Xing Z, Zeng Z, Niu H, Huang W. Dihydrodiosgenin protects against experimental acute pancreatitis and associated lung injury through mitochondrial protection and PI3Kγ/Akt inhibition. Br J Pharmacol. 2018 May;175(10):1621-1636. http://doi.org/10.1111/bph.14169. Epub 2018 Apr 2. PMID: 29457828.

Sidarala V, Zhu J, Levi-D'Ancona E, Pearson GL, Reck EC, Walker EM, Kaufman BA, Soleimanpour SA. Mitofusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis. Nat Commun. 2022 Apr 29;13(1):2340. http://doi.org/10.1038/s41467-022-29945-7. PMID: 35487893.

Srinivasan MP, Bhopale KK, Caracheo AA, Kaphalia L, Loganathan G, Balamurugan AN, Rastellini C, Kaphalia BS. Differential cytotoxicity, ER/oxidative stress, dysregulated AMPKα signaling, and mitochondrial stress by ethanol and its metabolites in human pancreatic acinar cells. Alcohol Clin Exp Res. 2021 May;45(5):961-978. http://doi.org/10.1111/acer.14595. Epub 2021 Apr 2. PMID: 33690904.

Tian F, Li H, Wang L, Li B, Aibibula M, Zhao H, Feng N, Lv J, Zhang G, Ma X. The diagnostic value of serum C-reactive protein, procalcitonin, interleukin-6 and lactate dehydrogenase in patients with severe acute pancreatitis. Clin Chim Acta. 2020 Nov;510:665-670. http://doi.org/10.1016/j.cca.2020.08.029. Epub 2020 Aug 20. PMID: 32828732.

Tong B, Zhang Z, Li X, Liu J, Wang H, Song L, Feng J, Dai Z, Xu Y. FUNDC1 modulates mitochondrial defects and pancreatic β-cell dysfunction under lipotoxicity. Biochem Biophys Res Commun. 2023 Sep 10;672:54-64. http://doi.org/10.1016/j.bbrc.2023.06.042. Epub 2023 Jun 14. PMID: 37336125.

Tóth E, Maléth J, Závogyán N, Fanczal J, Grassalkovich A, Erdős R, Pallagi P, Horváth G, Tretter L, Bálint ER, Rakonczay Z Jr, Venglovecz V, Hegyi P. Novel mitochondrial transition pore inhibitor N-methyl-4-isoleucine cyclosporin is a new therapeutic option in acute pancreatitis. J Physiol. 2019 Dec;597(24):5879-5898. http://doi.org/10.1113/JP278517. Epub 2019 Dec 1. PMID: 31631343.

Trikudanathan G, Yazici C, Evans Phillips A, Forsmark CE. Diagnosis and Management of Acute Pancreatitis. Gastroenterology. 2024 Sep;167(4):673-688. http://doi.org/10.1053/j.gastro.2024.02.052. Epub 2024 May 15. PMID: 38759844.

Trumbeckaite S, Kuliaviene I, Deduchovas O, Kincius M, Baniene R, Virketyte S, Bukauskas D, Jansen E, Kupčinskas L, Borutaite V, Gulbinas A. Experimental acute pancreatitis induces mitochondrial dysfunction in rat pancreas, kidney and lungs but not in liver. Pancreatology. 2013 May-Jun;13(3):216-24. http://doi.org/10.1016/j.pan.2013.04.003. Epub 2013 Apr 12. PMID: 23719591.

Vanasco V, Ropolo A, Grasso D, Ojeda DS, García MN, Vico TA, Orquera T, Quarleri J, Alvarez S, Vaccaro MI. Mitochondrial Dynamics and VMP1-Related Selective Mitophagy in Experimental Acute Pancreatitis. Front Cell Dev Biol. 2021 Mar 18;9:640094. http://doi.org/10.3389/fcell.2021.640094. eCollection 2021. PMID: 33816487.

Voronina SG, Barrow SL, Simpson AW, Gerasimenko OV, da Silva Xavier G, Rutter GA, Petersen OH, Tepikin AV. Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells. Gastroenterology. 2010 May;138(5):1976-87. http://doi.org/10.1053/j.gastro.2010.01.037. Epub 2010 Jan 25. PMID: 20102715.

Wang W, Li E, Zou J, Qu C, Ayala J, Wen Y, Islam MS, Weintraub NL, Fulton DJR, Liang Q, Zhou J, Liu J, Li J, Sun Y, Su H. Ubiquitin Ligase RBX2/SAG Regulates Mitochondrial Ubiquitination and Mitophagy. Circ Res. 2024 Jul 19;135(3):e39-e56. http://doi.org/10.1161/CIRCRESAHA.124.324285. Epub 2024 Jun 14. PMID: 38873758.

Wang W, Wang Y, Yuan C, Cao F, Tang W, Zhu Q, Dong X, Deng L, Lu G, Xia Q, Chen W. Pentraxin3 exacerbates acute pancreatitis injury by inhibiting oxidative phosphorylation pathway. Sci Rep. 2025 Feb 26;15(1):6977. http://doi.org/10.1038/s41598-025-90932-1. PMID: 40011615.

Wei S, Qiu T, Yao X, Wang N, Jiang L, Jia X, Tao Y, Wang Z, Pei P, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X. Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater. 2020 Feb 15;384:121390. http://doi.org/10.1016/j.jhazmat.2019.121390. Epub 2019 Oct 5. PMID: 31735470.

Wen E, Cao Y, He S, Zhang Y, You L, Wang T, Wang Z, He J, Feng Y. The mitochondria-targeted Kaempferol nanoparticle ameliorates severe acute pancreatitis. J Nanobiotechnology. 2024 Apr 3;22(1):148. http://doi.org/10.1186/s12951-024-02439-y. PMID: 38570776.

Wiley MB, Mehrotra K, Bauer J, Yazici C, Bialkowska AB, Jung B. Acute Pancreatitis: Current Clinical Approaches, Molecular Pathophysiology, and Potential Therapeutics. Pancreas. 2023 Jul 1;52(6):e335-e343. http://doi.org/10.1097/MPA.0000000000002259. PMID: 38127317.

Wu L, Xu W, Wang F, Lv T, Yin Z, Song Y. Plasma mtDNA Analysis Aids in Predicting Pancreatic Necrosis in Acute Pancreatitis Patients: A Pilot Study. Dig Dis Sci. 2018 Nov;63(11):2975-2982. http://doi.org/10.1007/s10620-018-5227-9. Epub 2018 Aug 9. PMID: 30094625.

Wu Z, Han X, Bao J, Li B, Shen J, Song P, Peng Q, Wang X, Hu G. Dopamine D2 Receptor Signaling Attenuates Acinar Cell Necroptosis in Acute Pancreatitis through the Cathepsin B/TFAM/ROS Pathway. Oxid Med Cell Longev. 2022 Jul 26;2022:4499219. http://doi.org/10.1155/2022/4499219. eCollection 2022. PMID: 35927992.

Xia CC, Chen HT, Deng H, Huang YT, Xu GQ. Reactive oxygen species and oxidative stress in acute pancreatitis: Pathogenesis and new therapeutic interventions. World J Gastroenterol. 2024 Dec 7;30(45):4771-4780. http://doi.org/10.3748/wjg.v30.i45.4771. PMID: 39649547.

Xu M, Feng Y, Xiang X, Liu L, Tang G. MZB1 regulates cellular proliferation, mitochondrial dysfunction, and inflammation and targets the PI3K-Akt signaling pathway in acute pancreatitis. Cell Signal. 2024 Jun;118:111143. http://doi.org/10.1016/j.cellsig.2024.111143. Epub 2024 Mar 18. PMID: 38508349.

Yakah W, Shah I, Skelton-Badlani D, Freedman SD, Popov YV, Sheth SG; BIDMC Acute Pancreatitis Working Group. Circulating Mitochondrial DNA as a Diagnostic Biomarker for Predicting Disease Severity in Patients With Acute Pancreatitis. Gastroenterology. 2023 May;164(6):1009-1011.e3. http://doi.org/10.1053/j.gastro.2023.01.013. Epub 2023 Jan 18. PMID: 36669623.

Yang Y, Hu Q, Kang H, Li J, Zhao X, Zhu L, Tang W, Wan M. Urolithin A protects severe acute pancreatitis-associated acute cardiac injury by regulating mitochondrial fatty acid oxidative metabolism in cardiomyocytes. MedComm (2020). 2023 Dec 19;4(6):e459. http://doi.org/10.1002/mco2.459. eCollection 2023 Dec. PMID: 38116065.

Yao J, Jiang Y, Zhang P, Miao Y, Wu X, Lei H, Xie Z, Tian Y, Zhao X, Li J, Zhu L, Wan M, Tang W. Genetic and pharmacological targeting of HINT2 promotes OXPHOS to alleviate inflammatory responses and cell necrosis in acute pancreatitis. Pharmacol Res. 2025 Feb;212:107620. http://doi.org/10.1016/j.phrs.2025.107620. Epub 2025 Jan 21. PMID: 39848351.

Yu X, Dai C, Zhao X, Huang Q, He X, Zhang R, Lin Z, Shen Y. Ruthenium red attenuates acute pancreatitis by inhibiting MCU and improving mitochondrial function. Biochem Biophys Res Commun. 2022 Dec 20;635:236-243. http://doi.org/10.1016/j.bbrc.2022.10.044. Epub 2022 Oct 14. PMID: 36283336.

Zanfardino P, Amati A, Perrone M, Petruzzella V. The Balance of MFN2 and OPA1 in Mitochondrial Dynamics, Cellular Homeostasis, and Disease. Biomolecules. 2025 Mar 18;15(3):433. http://doi.org/10.3390/biom15030433. PMID: 40149969.

Zhang D, Li J, Zhao L, Yang Z, Wu C, Liu Y, Li W, Jin Z, Ma J. Mitochondrial DNA Leakage Promotes Persistent Pancreatic Acinar Cell Injury in Acute Pancreatitis via the cGAS-STING-NF-κB Pathway. Inflammation. 2024 Aug 24. http://doi.org/10.1007/s10753-024-02132-0. Online ahead of print. PMID: 39180578.

Zhang Q, Shen Y, Zhang C, Zhang H, Li X, Yang S, Dai C, Yu X, Lou J, Feng J, Hu C, Lin Z, Li X, Zhou X. Immunoengineered mitochondria for efficient therapy of acute organ injuries via modulation of inflammation and cell repair. Sci Adv. 2025 Mar 21;11(12):eadj1896. http://doi.org/10.1126/sciadv.adj1896. Epub 2025 Mar 19. PMID: 40106554.

Zhang R, Zhu S, Shi L, Zhang H, Xu X, Xiang B, Wang M. Automated machine learning for early prediction of systemic inflammatory response syndrome in acute pancreatitis. BMC Med Inform Decis Mak. 2025 Apr 17;25(1):167. http://doi.org/10.1186/s12911-025-02997-7. PMID: 40247291.

Zhang X, Xin G, Li S, Wei Z, Ming Y, Yuan J, Wen E, Xing Z, Yu K, Li Y, Zhang J, Zhang B, Niu H, Huang W. Dehydrocholic Acid Ameliorates Sodium Taurocholate-Induced Acute Biliary Pancreatitis in Mice. Biol Pharm Bull. 2020;43(6):985-993. http://doi.org/10.1248/bpb.b20-00021. PMID: 32475920.

Zhao ZF, Zhang Y, Sun Y, Zhang CH, Liu MW. Protective effects of baicalin on caerulein-induced AR42J pancreatic acinar cells by attenuating oxidative stress through miR-136-5p downregulation. Sci Prog. 2021 Apr-Jun;104(2):368504211026118. http://doi.org/10.1177/00368504211026118. PMID: 34176350.

Zheng X, Li L, Zhu Y, Huang X, Zhang Y, Yu B, He W, Lv N. Superoxide Dismutase Predicts Persistent Circulation Failure and Mortality in the Early Stage of Acute Pancreatitis. Dig Dis Sci. 2020 Dec;65(12):3551-3557. http://doi.org/10.1007/s10620-020-06069-w. Epub 2020 Jan 29. PMID: 31997054.

Zhong Y, Xia S, Wang G, Liu Q, Ma F, Yu Y, Zhang Y, Qian L, Hu L, Xie J. The interplay between mitophagy and mitochondrial ROS in acute lung injury. Mitochondrion. 2024 Sep;78:101920. http://doi.org/10.1016/j.mito.2024.101920. Epub 2024 Jun 12. PMID: 38876297.

Zhu CJ, Yang WG, Li DJ, Song YD, Chen SY, Wang QF, Liu YN, Zhang Y, Cheng B, Wu ZW, Cui ZC. Calycosin attenuates severe acute pancreatitis-associated acute lung injury by curtailing high mobility group box 1 — induced inflammation. World J Gastroenterol. 2021 Nov 28;27(44):7669-7686. http://doi.org/10.3748/wjg.v27.i44.7669. PMID: 34908806.

Zhu Y, Liu S, Wang F. MicroRNA MiR-27a-5p Alleviates the Cerulein-Induced Cell Apoptosis and Inflammatory Injury of AR42J Cells by Targeting Traf3 in Acute Pancreatitis. Inflammation. 2020 Oct;43(5):1988-1998. http://doi.org/10.1007/s10753-020-01272-3. PMID: 3264795.

Zong W, Liu Z, Yang Z, Cheng L, Shi M, Zhang G, Wang X, Chen J, Wang X, Ou L, Li W. Computer-aided design of short peptide ligands targeting N-formyl peptide MT-ND6: potential application in treating severe inflammatory diseases. J Mater Chem B. 2025 May 7;13(18):5380-5388. http://doi.org/10.1039/d4tb02713b. PMID: 40237035.

##submission.downloads##

Опубліковано

2025-12-23

Номер

Розділ

Огляди