Кишкова мікробіота і метаболічно- асоційована стеатотична хвороба печінки: сучасне розуміння проблеми. Огляд літератури

Автор(и)

  • Г. Д. Фадєєнко ДУ «Національний інститут терапії імені Л. Т. Малої НАМН України», Харків, Україна http://orcid.org/0000-0003-0881-6541
  • О. Є. Гріднєв ДУ «Національний інститут терапії імені Л. Т. Малої НАМН України», Харків, Україна https://orcid.org/0000-0003-4716-3520
  • Н. І. Черелюк ДУ «Національний інститут терапії імені Л. Т. Малої НАМН України», Харків, Україна https://orcid.org/0000-0002-4227-6529

DOI:

https://doi.org/10.30978/MG-2024-3-39

Ключові слова:

кишкова мікробіота, метаболічно‑асоційована стеатотична хвороба печінки, мікобіом, мітохондрії, коротколанцюгові жирні кислоти, жовчні кислоти

Анотація

Перехресна взаємодія мікроорганізмів, мікробних продуктів та кишкового бар’єра є складовими осі кишечник — печінка, оскільки печінка і кишечник мають тісний взаємозв’язок. У пацієнтів із метаболічно‑асоційованою стеатотичною хворобою печінки (МАСХП) спостерігаються значні характерні зміни в кишковому мікробіомі, зокрема збільшення кількості грамнегативних бактерій, що спричиняє формування прозапального статусу (насамперед за рахунок ендотоксинів) та порушення метаболічних процесів, тоді як збільшення кількості Bacteroides і Ruminococcus та зменшення кількості Prevotella асоціюється з тяжкими стадіями фіброзу печінки. Кишкова мікробіота модулює пул жовчних кислот, впливаючи на метаболічний гомеостаз і прозапальні процеси. Дисбіоз, пов’язаний із МАСХП, характеризується надлишком бактерій‑продуцентів вторинних жовчних кислот, які є одним із чинників прогресування метаболічно‑асоційованого стеатогепатиту. Крім того, дисбіоз призводить до підвищеного вироблення коротколанцюгових жирних кислот, що спричинює глюконеогенез, синтез і накопичення токсичних ліпідів у печінці та, відповідно, розвиток і прогресування МАСХП. Однак порушення функції печінки, пов’язані з дисбіозом, асоціюються не лише з кишковими бактеріями, а й із грибами та вірусами. За результатами останніх досліджень, МАСХП асоціюється зі значним різноманіттям мікробіому та має відмінності при прогресуванні захворювання залежно від ступеня запалення печінки та стадії фіброзу. Хронічна гіперпродукція ендогенного етанолу (Klebsiella pneumoniae, Escherichia, Candida тощо) є важливим чинником патогенезу MAСХП, оскільки порушує метаболізм глюкози та ліпідів, що призводить до формування стеатозу печінки та стеатогепатиту. Ультраструктурні й функціональні зміни мітохондрій є визнаними детермінантами в патогенезі MAСХП. Мітохондрії та кишкова мікробіота мають двонаправлений зв’язок: мікробіота постачає метаболіти для мітохондріального метаболізму та окисно‑відновного гомеостазу, а розвиток дисбіозу спричинює окисний стрес та прозапальний статус — ключові чинники розвитку метаболічно‑асоційованого стеатогепатиту. Мітохондрії можуть модулювати мікрофлору кишечника за рахунок впливу на проникність кишкового бар’єра. Наведені у статті дані розширюють знання про взаємодію печінки та кишечника й сприятимуть розробці нових перспективних терапевтичних підходів до лікування МАСХП, що передбачають синергетичний вплив на кишкову мікробіоту, мікробіом, віріом та функцію мітохондрій.

 

Біографії авторів

Г. Д. Фадєєнко, ДУ «Національний інститут терапії імені Л. Т. Малої НАМН України», Харків

чл.-кор. НАМН України, д. мед. н., проф., зав. відділу вивчення захворювань органів травлення і їхньої коморбідності з неінфекційними захворюваннями

О. Є. Гріднєв, ДУ «Національний інститут терапії імені Л. Т. Малої НАМН України», Харків

д. мед. н., ст. наук. співр., пров. наук. співр. відділу вивчення захворювань органів травлення та їхньої коморбідності з неінфекційними захворюваннями

Н. І. Черелюк, ДУ «Національний інститут терапії імені Л. Т. Малої НАМН України», Харків

доктор філософії за спеціальністю «Медицина» (PhD), наук. співр. відділу вивчення захворювань органів травлення та їхньої коморбідності з неінфекційними захворюваннями

Посилання

Achufusi TGO, Sharma A, Zamora EA, Manocha D. Small intestinal bacterial overgrowth: comprehensive review of diagnosis, prevention, and treatment methods. Cureus. 2020;12:e8860. http://doi.org/10.7759/cureus.8860.

Adebayo M, Singh S, Singh AP, Dasgupta S. Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis. FASEB J. 2021;35:e21620. http://doi.org/10.1096/fj.202100067R.

Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol. 2020;72:558-77. http://doi.org/10.1016/j.jhep.2019.10.003.

Alevriadou BR, Patel A, Noble M, et al. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol. 2021;320:C465-C482. http://doi.org/10.1152/ajpcell.00502.2020.

Allin KH, Tremaroli V, Caesar R, et al. Aberrant intestinal microbiota in individuals with prediabetes.Diabetologia. 2018;61:810-20. http://doi.org/10.1007/s00125-018-4550-1.

Al Madhoun A, Kochumon S, Al-Rashed F, et al. Dectin-1 as a potential inflammatory biomarker for metabolic inflammation in adipose tissue of individuals with obesity. Cells. 2022;11(18). http://doi.org/10.3390/cells11182879.

An L, Wirth U, Koch D, et al. The role of gut-derived lipopolysaccharides and the intestinal barrier in fatty liver diseases. J Gastrointest Surg. 2022;26:671-83. http://doi.org/10.1007/s11605-021-05188-7.

Aoki S, Iwai A, Kawata K, et al. Oral administration of the Aureobasidium pullulans-derived beta-glucan effectively prevents the development of high fat diet-induced fatty liver in mice. Sci Rep. 2015;5:10457. http://doi.org/10.1038/srep10457.

Aron-Wisnewsky J, Vigliotti C, Witjes J, et al. Gut microbiota and human NAFLD: Disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol. 2020;17:279-97. http://doi.org/10.1038/s41575-020-0269-9.

Arslan N. Obesity, fatty liver disease and intestinal microbiota. World J Gastroenterol. 2014;20:16452-63. http://doi.org/10.3748/wjg.v20.i44.16452.

Baker SS, Baker RD, Liu W, Nowak NJ, Zhu L. Role of alcohol metabolism in non-alcoholic steatohepatitis PLoS One. 2010;5(3):e9570. http://doi.org/10.1371/journal.pone.0009570.

Bayoumy AB, Mulder CJJ, Mol JJ, Tushuizen ME. Gut fermentation syndrome: a systematic review of case reports. Unit Eur Gastroenterol J. 2021;9(3):332-42. http://doi.org/10.1002/ueg2.12062.

Begley M, Gahan CG, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev. 2005;29:625-51. http://doi.org/10.1016/j.femsre.2004.09.003.

Bellanti F, Lo Buglio A, Vendemiale G. Hepatic mitochondria-gut microbiota interactions in metabolism-associated fatty liver disease. Metabolites. 2023 Feb 21;13(3):322. http://doi.org/10.3390/metabo13030322.

Blaak EE, Canfora EE, Theis S, et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes. 2020;11:411-55. http://doi.org/10.3920/BM2020.0057.

Boulange CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8:42. https://doi.org/10.1186/s13073-016-0303-2.

Borges FM, de Paula TO, Sarmiento MRA, et al. Fungal diversity of human gut microbiota among eutrophic, overweight, and obese individuals based on aerobic culture-dependent approach. Curr Microbiol. 2018;75(6):726-35.

Cani PD, Knauf C. A newly identified protein from Akkermansia muciniphila stimulates GLP-1 secretion. Cell Metab. 2021;33:1073-5. http://doi.org/10.1016/j.cmet.2021.05.004.

Castoldi A, Andrade-Oliveira V, Aguiar CF, et al. Dectin-1 activation exacerbates obesity and insulin resistance in the absence of MyD88. Cell Rep. 2017;19(11):2272-88. https://doi.org/10.1016/j.celrep.2017.05.059.

Chackelevicius CM, Gambaro SE, Tiribelli C, Rosso N. Th17 involvement in nonalcoholic fatty liver disease progression to non-alcoholic steatohepatitis. World J Gastroenterol. 2016;22:9096-103. http://doi.org/10.3748/wjg.v22.i41.909.

Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64:1744-54. http://doi.org/10.1136/gutjnl-2014-307913.

Chavez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 2017;152(e3):1679-94. http://doi.org/10.1053/j.gastro.2017.01.055.

Chen YM, Liu Y, Zhou RF, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep. 2016;6:19076. http://doi.org/10.1038/srep19076.

Cheng CF, Ku HC, Lin H. PGC-1α as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci. 2018;19:3447. http://doi.org/10.3390/ijms19113447.

Chernikov A, Krapivin A, Khazanov V, Kuz’menko D, VIu S, Udut V. Effect of the energy metabolism regulator Yantar-Antitox on the system of energy production in rat liver during experimental pathology of beta-oxidation. Eksperimental’naia i Klin. Farmakol. 2012;75:24-7.

Chu H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut. 2019;68:359-70. http://doi.org/10.1136/gutjnl-2018-316307.

Chung MY, Mah E, Masterjohn C, et al. Green tea lowers hepatic COX-2 and prostaglandin E2 in rats with dietary fat-induced nonalcoholic steatohepatitis J Med Food. 2015;18(6):648-55. http://doi.org/10.1089/jmf.2014.0048.

Clark A, Mach N. The crosstalk between the gut microbiota and mitochondria during exercise. Front Physiol. 2017;8:319. http://doi.org/10.3389/fphys.2017.00319.

Clifford BL, Sedgeman LR, Williams KJ, et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab. 2021;33:1671-84.e4. http://doi.org/10.1016/j.cmet.2021.06.012.

Coppola S, Avagliano C, Calignano A, et al. The protective role of butyrate against obesity and obesity-related diseases. Molecules. 2021;26:682. https://doi.org/10.3390/molecules26030682.

Dabravolski SA, Bezsonov EE, Baig MS, Popkova TV, Orekhov AN. Mitochondrial lipid homeostasis at the crossroads of liver and heart diseases. Int J Mol Sci. 2021;22:6949. http://doi.org/10.3390/ijms22136949.

Da Silva HE, Teterina A, Comelli EM, et al. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci Rep. 2018;8:1466. https://doi.org/10.1038/s41598-018-19753-9.

Dave DT, Patel BM. Mitochondrial metabolism in cancer cachexia: Novel drug target. Curr Drug Metab. 2019;20:1141-53. http://doi.org/10.2174/1389200220666190816162658.

Degli Esposti D, Hamelin J, Bosselut N, et al. Mitochondrial roles and cytoprotection in chronic liver injury. Biochem. Res. Int. 2012;2012:387626. http://doi.org/10.1155/2012/387626.

De la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40:54-62. https://doi.org/10.2337/dc16-1324.

De La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol-Gastrointest Liver Physiol. 2010;299:G440-G4G8. http://doi.org/10.1152/ajpgi.00098.2010.

Del Barrio M, Lavín L, Santos-Laso Á, et al. Faecal micёrobiota transplantation, paving the way to treat non-alcoholic fatty liver disease. Int J Mol Sci. 2023 Mar 24;24(7):6123. http://doi.org/10.3390/ijms24076123.

Del Chierico F, Nobili V, Vernocchi P, et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology. 2017;65:451-64. https://doi.org/10.1002/hep.28572.

Demir M, Lang S, Hartmann P, et al. The fecal mycobiome in non-alcoholic fatty liver disease. J Hepatol. 2022;76(4):788-99. https://doi.org/10.1016/j.jhep.2021.11.029.

Den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325-40. http://doi.org/10.1194/jlr.R036012.

Dhanwani R, Takahashi M, Sharma S. Cytosolic sensing of immuno-stimulatory DNA, the enemy within. Curr Opin Immunol. 2018;50:82-7. http://doi.org/10.1016/j.coi.2017.11.004.

Di Ciaula A, Wang DQ, Molina-Molina E, et al. Bile acids and cancer: direct and environmental-dependent effects. Ann Hepatol. 2017;16:s87-s105. https://doi.org/10.5604/01.3001.0010.5501.

Di Ciaula A, Baj J, Garruti G, et al. Liver steatosis, gut-liver axis, microbiome and environmental factors. A never-ending bidirectional cross-talk. J Clin Med. 2020;9:2648. https://doi.org/10.3390/jcm9082648.

Di Ciaula A, Passarella S, Shanmugam H, et al. Nonalcoholic fatty liver disease (NAFLD). Mitochondria as players and targets of therapies? Int J Mol Sci. 2021;22:5375. http://doi.org/10.3390/ijms22105375.

Di Ciaula A, Bonfrate L, Baj J, et al. Recent advances in the digestive, metabolic and therapeutic effects of Farnesoid X receptor and fibroblast growth factor 19: from cholesterol to bile acid signaling. Nutrients. 2022;14:4950. https://doi.org/10.3390/nu14234950.

Di Ciaula A, Bonfrate L, Khalil M, Garruti G, Portincasa P. Contribution of the microbiome for better phenotyping of people living with obesity. Rev Endocr Metab Disord. 2023:1-32. https://doi.org/10.1007/s11154-023-09798-1.

Di Palo DM, Garruti G, Di Ciaula A, et al. Increased colonic permeability and lifestyles as contributing factors to obesity and liver steatosis. Nutrients. 2020;12:E564. https://doi.org/10.3390%2Fnu12020564.

Dufossé L, Fouillaud M, Caro Y. Fungi and fungal metabolites for the improvement of human and animal nutrition and health. J Fungi (Basel). 2021;7(4). http://doi.org/10.3390/jof7040274.

Dupraz L, Magniez A, Rolhion N, et al. Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep. 2021;36:109332. http://doi.org/10.1016/j.celrep.2021.109332.

Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19:55-71. http://doi.org/10.1038/s41579-020-0433-9.

Fang J, et al. Gut dysbiosis in nonalcoholic fatty liver disease: Pathogenesis, diagnosis, and therapeutic implications. Front Cell Infect Microbiol. 2022;12:997718. http://doi.org/10.3389/fcimb.2022.997018.

Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91:151-75. http://doi.org/10.1152/physrev.00003.2008.

Ferslew B, Xie G, Johnston C, et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig Dis Sci. 2015;60:3318-28. https://doi.org/10.1007/s10620-015-3776-8.

Fiorucci S, Distrutti E. The pharmacology of bile acids and their receptors. Bile Acids Recept. 2019;256:3-18. http://doi.org/10.1007/164_2019_238.

Fletcher JA, Deja S, Satapati S, Fu X, Burgess SC, Browning JD. Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight. 2019;5:e127737. http://doi.org/10.1172/jci.insight.127737.

Franco-Obregón A, Gilbert JA. The microbiome-mitochondrion connection: common ancestries, common mechanisms, common goals. Msystems. 2017;2:e00018-17. http://doi.org/10.1128/mSystems.00018-17.

Gagliardi MC, Teloni R, Mariotti S, et al. Endogenous PGE2 promotes the induction of human Th17 responses by fungal β-glucan. J Leukoc Biol. 2010;88(5):947-54. https://doi.org/10.1189/jlb.0310139.

García-Alonso V, Titos E, lcaraz-Quiles J, et al. Prostaglandin E2 exerts multiple regulatory actions on human obese adipose tissue remodeling, inflammation, adaptive thermogenesis and lipolysis PLoS One. 2016;11(4):e0153751. https://doi.org/10.1371/journal.pone.0153751.

Garcia-Gamboa R, Kirchmayr MR, Gradilla-Hernandez MS, Perez-Brocal V, Moya A, Gonzalez-Avila M. The intestinal mycobiota and its relationship with overweight, obesity and nutritional aspects. J Hum Nutr Diet. 2021;34(4):645-55. https://doi.org/10.1111/jhn.12864.

García-Ruiz C, Fernández-Checa JC. Mitochondrial oxidative stress and antioxidants balance in fatty liver disease. Hepatol Commun. 2018;2:1425-39. http://doi.org/10.1002/hep4.1271.

Ghoshal UC, Gwee K-A. Post-infectious IBS, tropical sprue and small intestinal bacterial overgrowth: The missing link. Nat Rev Gastroenterol Hepatol. 2017;14:435-41. http://doi.org/10.1038/nrgastro.2017.37.

Gillard J, Clerbaux LA, Nachit M, et al. Bile acids contribute to the development of non-alcoholic steatohepatitis in mice. JHEP Rep. 2021;4:100387. http://doi.org/10.1016/j.jhepr.2021.100387.

Gitto S, Schepis F, Andreone P, Villa E. Study of the serum metabolomic profile in nonalcoholic fatty liver disease: research and clinical perspectives. Metabolites. 2018;8:17. http://doi.org/10.3390/metabo8010017.

Grattagliano I, Diogo CV, Mastrodonato M, et al. A silybin-phospholipids complex counteracts rat fatty liver degeneration and mitochondrial oxidative changes. World J Gastroenterol. 2013;19:3007-17. http://dx.doi.org/10.3748/wjg.v19.i20.3007.

Grozer Z, Toth A, Toth R, et al. Candida parapsilosis produces prostaglandins from exogenous arachidonic acid and OLE2 is not required for their synthesis. Virulence. 2015;6(1):85-9. https://doi.org/10.4161/21505594.2014.988097.

Gudan A, Kozłowska-Petriczko K, Wunsch E, Bodnarczuk T, Stachowska E. Small intestinal bacterial overgrowth and non-alcoholic fatty liver disease: What do we know in 2023? Nutrients. 2023 Mar 8;15(6):1323. http://doi.org/10.3390/nu15061323.

Guo X, Li S, Zhang J, et al. Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas. BMC Genom. 2017;18:800. https://doi.org/10.1186/s12864-017-4195-3.

Han X, Cui Z-Y, Song J, et al. Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease via FXR/LXRs-dependent manner. Chem Interactions. 2019;311:108794. http://doi.org/10.1016/j.cbi.2019.108794.

Harley IT, Stankiewicz TE, Giles DA, et al. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology. 2014;59(5):1830-9. https://doi.org/10.1002/hep.26746.

Henkel J, Neuschäfer-Rube F, Pathe-Neuschäfer-Rube A, Püschel GP. Aggravation by prostaglandin E2 of interleukin-6-dependent insulin resistance in hepatocytes. Hepatology. 2009;50(3):781-90. https://doi.org/10.1002/hep.23064.

Hong Y, et al. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice. Gut Microbes. 2021;13:1-20. http://doi.org/10.1080/19490976.2021.1930874.

Hoyles L, Fernández-Real J-M, Federici M, et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. 2018;24:1070-80. http://doi.org/10.1038/s41591-018-0061-3.

Hu H, Lin A, Kong M, et al. Intestinal microbiome and NAFLD: Molecular insights and therapeutic perspectives. J Gastroenterol. 2020;55:142-58. http://doi.org/10.1007/s00535-019-01649-8.

Huang Y, Xin W, Xiong J, Yao M, Zhang B, Zhao J. The intestinal microbiota and metabolites in the gut-kidney-heart axis of chronic kidney disease. Front Pharmacol. 2022;13:734. http://doi.org/10.3389/fphar.2022.837500.

Iino C, Endo T, Mikami K, et al. Significant decrease in Faecalibacterium among gut microbiota in nonalcoholic fatty liver disease: a large BMI- and sex-matched population study. Hepatol Int. 2019;13:748-56. http://doi.org/10.1007/s12072-019-09987-8.

Ikewaki N, Levy GA, Kurosawa G, et al. Hepatoprotective effects of aureobasidium pullulans derived beta 1,3-1,6 glucans in a murine model of non-alcoholic steatohepatitis. J Clin Exp Hepatol. 2022;12(6):1428-37. http://doi.org/10.1016/j.jceh.2022.06.008.

Imajo M, Tsuchiya Y, Nishida E. Regulatory mechanisms and functions of MAP kinase signaling pathways. IUBMB Life. 2006;58:312-7. http://doi.org/10.1080/15216540600746393.

Inami Y, Yamashina S, Izumi K, et al. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem Biophys Res Commun. 2011;412:618-25. http://doi.org/10.1016/j.bbrc.2011.08.012.

Indiani C, Rizzardi KF, Castelo PM, Ferraz LFC, Darrieux M, Parisotto TM. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review. Child Obes. 2018;14:501-9. https://doi.org/10.1089/chi.2018.0040.

Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21:8787-803.

Jeon S, Carr R. Alcohol effects on hepatic lipid metabolism. J Lipid Res. 2020;61:470-9. http://doi.org/10.1194/jlr.R119000547.

Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15:111-28. http://doi.org/10.1038/nrgastro.2017.119.

Jiang C, Xie C, Li F, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest. 2015;125:386-402. http://doi.org/10.1172/jci76738.

Jiang W, Wu N, Wang X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep. 2015;5:8096. http://doi.org/10.1038/srep08096.

Jiao N, Baker S, Chapa-Rodriguez A, et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut. 2018;67:1881-91. http://doi.org/10.1136/gutjnl-2017-314307.

Kasper L, Konig A, Koenig A, et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat Commun. 2018;9(1):4260. http://doi.org/10.1038/s41467-018-06607-1.

Kasper M, Karsten U, Stosiek P, Moll R. Distribution of intermediate-filament proteins in the human enamel organ: Unusually complex pattern of coexpression of cytokeratin polypeptides and vimentin. Differentiation. 1989;40:207-14. http://doi.org/10.1111/j.1432-0436.1989.tb00600.x.

Kazankov K, Jørgensen SMD, Thomsen KL, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019;16:145-59. http://doi.org/10.1038/s41575-018-0082-x.

Khan A, Ding Z, Ishaq M, et al. Understanding the effects of gut microbiota dysbiosis on nonalcoholic fatty liver disease and the possible probiotics role: recent updates. Int J Biol Sci. 2021;17:818-33. http://doi.org/10.7150/ijbs.56214.

Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Role of gut microbiota in the aetiology of obesity: proposed mechanisms and review of the literature. J Obes. 2016:20167353642. https://doi.org/10.1155/2016/7353642.

Kim HN, Joo EJ, Cheong HS, et al. Gut microbiota and risk of persistent nonalcoholic fatty liver diseases. J Clin Med. 2019;8:1089. https://doi.org/10.3390/jcm8081089.

Kimura T, Pydi SP, Pham J, Tanaka N. Metabolic functions of G protein-coupled receptors in hepatocytes-potential applications for diabetes and NAFLD. Biomolecules. 2020;10:1445. http://doi.org/10.3390/biom10101445.

Koliaki C, Szendroedi J, Kaul K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 2015;21:739-46. http://doi.org/10.1016/j.cmet.2015.04.004.

Kondori N, Edebo L, Mattsby-Baltzer I. Circulating beta (1-3) glucan and immunoglobulin G subclass antibodies to Candida albicans cell wall antigens in patients with systemic candidiasis. Clin Diagn Lab Immunol. 2004;11(2):344-50. https://doi.org/10.1128/cdli.11.2.344-350.2004.

Lai J, Luo L, Zhou T, Feng X, Ye J, Zhong B. Alterations in circulating bile acids in metabolic dysfunction-associated steatotic liver disease: a systematic review and meta-analysis. Biomolecules. 2023 Sep;13(9):1356. http://doi.org/10.3390/biom13091356.

Lang S, Demir M, Martin A, et al. Intestinal virome signature associated with severity of nonalcoholic fatty liver disease. Gastroenterology. 2020;159:1839-52. http://doi.org/10.1053/j.gastro.2020.07.005.

Larsen IS, Choi BS, Föh B, et al. Experimental diets dictate the metabolic benefits of probiotics in obesity Gut Microb. 2023;15(1):2192547. http://doi.org/10.1080/19490976.2023.2192547.

Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085. https://doi.org/10.1371/journal.pone.0009085.

Lee GH, et al. Genome sequence of Oscillibacter ruminantium strain GH1, isolated from rumen of Korean native cattle. J Bacteriol. 2012;194:6362. http://doi.org/10.1128/jb.01677-12.

Lee NY, et al. Lactobacillus attenuates progression of nonalcoholic fatty liver disease by lowering cholesterol and steatosis. Clin Mol Hepatol. 2021;27:110-24. http://doi.org/10.3350/cmh.2020.0125.

Leon-Mimila P, Villamil-Ramirez H, Li XS, et al. Trimethylamine N-oxide levels are associated with NASH in obese subjects with type 2 diabetes. Diabetes Metab. 2021;47101183. https://doi.org/10.1016/j.diabet.2020.07.010.

Léveillé M, Besse-Patin A, Jouvet N, et al. PGC-1α isoforms coordinate to balance hepatic metabolism and apoptosis in inflammatory environments. Mol Metab. 2020;34:72-84. http://doi.org/10.1016/j.molmet.2020.01.004.

Li F, Ye J, Shao C, Zhong B. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and meta-analysis. Lipids Health Dis. 2021;20:22. https://doi.org/10.1186/s12944-021-01440-w.

Li J, Yang G, Zhang Q, Liu Z, Jiang X, Xin Y. Function of Akkermansia muciniphila in type 2 diabetes and related diseases. Front Microbiol. 2023;141172400. https://doi.org/10.3389%2Ffmicb.2023.1172400.

Li X, Su C, Jiang Z, et al. Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome. Npj Biofilms Microbiomes. 2021;7:36. http://doi.org/10.1038/s41522-021-00205-8.

Lin X, Mai M, He T, et al. Efficiency of ursodeoxycholic acid for the treatment of nonalcoholic steatohepatitis: A systematic review and meta-analysis. Expert Rev Gastroenterol. Hepatol. 2022;16:537-45. http://doi.org/10.1080/17474124.2022.2083605.

Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 2018;103:115-24. http://doi.org/10.1016/j.molimm.2018.09.010.

Liu Z, Zhang Z, Huang M, et al. Taurocholic acid is an active promoting factor, not just a biomarker of progression of liver cirrhosis: Evidence from a human metabolomic study and in vitro experiments. BMC Gastroenterol. 2018;18:112. http://doi.org/10.1186/s12876-018-0842-7.

Loomba R, Quehenberger O, Armando A, Dennis EA. Polyunsaturated fatty acid metabolites as novel lipidomic biomarkers for noninvasive diagnosis of nonalcoholic steatohepatitis. J Lipid Res. 2015;56(1):185-92. http://doi.org/10.1194/jlr.p055640.

Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell. 2021;184:2537-64. http://doi.org/10.1016/j.cell.2021.04.015.

Maestri M, Santopaolo F, Pompili M, Gasbarrini A, Ponziani FR. Gut microbiota modulation in patients with non-alcoholic fatty liver disease: Effects of current treatments and future strategies. Front Nutr. 2023 Feb 16;10:1110536. http://doi.org/10.3389/fnut.2023.1110536.

Mar Rodriguez M, Perez D, Chaves FJ, et al. Obesity changes the human gut mycobiome. Sci Rep. 2015;5:14600. https://doi.org/10.1038/srep14600.

Maya-Lucas O, Murugesan S, Nirmalkar K, et al. The gut microbiome of Mexican children affected by obesity. Anaerobe. 2019;55:11-23. http://doi.org/10.1016/j.anaerobe.2018.10.009.

Mbaye B, Borentain P, Magdy Wasfy R, et al. Endogenous ethanol and triglyceride production by gut Pichia kudriavzevii, Candida albicans and Candida glabrata yeasts in non-alcoholic steatohepatitis. Cells. 2022;11(21). https://doi.org/10.3390/cells11213390.

Mehedint MG, Zeisel SH. Choline’s role in maintaining liver function: new evidence for epigenetic mechanisms. Curr Opin Clin Nutr Metab Care. 2013;16:339-45. https://doi.org/10.1097/mco.0b013e3283600d46.

Meijnikman AS, Davids M, Herrema H, et al. Microbiome-derived ethanol in nonalcoholic fatty liver disease. Nat Med. 2022;28:2100-6. http://doi.org/10.1038/s41591-022-02016-6.

Milosevic I, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: A review of the literature. Int J Mol Sci. 2019;20:1. http://doi.org/10.3390/ijms20020395.

Mims TS, Abdallah QA, Stewart JD, et al. The gut mycobiome of healthy mice is shaped by the environment and correlates with metabolic outcomes in response to diet. Commun Biol. 2021;4(1):281. http://doi.org/10.1038/s42003-021-01820-z.

Mitochondrial toxicity & stunting our energy production: An epidemic of mass proportions? 2023. [(accessed on 20 June 2023)]. Available online:. https://drjessmd.com/mitochondrial-toxicity-stunting-our-energy-production-an-epidemic-of-mass-proportions/.

Mitsuyoshi H, Nakashima T, Sumida Y, et al. Ursodeoxycholic acid protects hepatocytes against oxidative injury via induction of antioxidants. Biochem Biophys Res Commun. 1999;263:537-42. http://doi.org/10.1006/bbrc.1999.1403.

Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014;20:1126-67. http://doi.org/10.1089/ars.2012.5149.

Moore MP, Cunningham RP, Meers GM, et al. Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology. 2022;76:1452-65. http://doi.org/10.1002/hep.32324.

Mouzaki M, Wang AY, Bandsma R, et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS ONE. 2016;11:e0151829. http://doi.org/10.1371/journal.pone.0151829.

Mridha AR, Wree A, Robertson AAB, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol. 2017;66(5):1037-46. https://doi.org/10.1016/j.jhep.2017.01.022.

Naito Y, Ushiroda C, Mizushima K, et al. Epigallocatechin-3-gallate (EGCG) attenuates non-alcoholic fatty liver disease via modulating the interaction between gut microbiota and bile acids. J Clin Biochem Nutr. 2020;67:2-9. http://doi.org/10.3164/jcbn.20-39.

Nash AK, Auchtung TA, Wong MC, et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017;5(1):153. http://doi.org/10.1186/s40168-017-0373-4.

Nimer N, Choucair I, Wang Z, et al. Bile acids profile, histopathological indices and genetic variants for non-alcoholic fatty liver disease progression. Metabolism. 2021;116:154457. http://doi.org/10.1016/j.metabol.2020.154457.

Nobili V, Alisi A, Mosca A, et al. Hepatic farnesoid X receptor protein level and circulating fibroblast growth factor 19 concentration in children with NAFLD. Liver Int. 2018;38:342-9. http://doi.org/10.1111/liv.13531.

Oh JH, Lee JH, Cho MS, et al. Characterization of gut microbiome in Korean patients with metabolic associated fatty liver disease. Nutrients. 2021;13(3). http://doi.org/10.3390/nu13031013.

Oliva-Vilarnau N, Hankeova S, Vorrink SU, et al. Calcium signaling in liver injury and regeneration. Front Med. 2018;5:192. http://doi.org/10.3389/fmed.2018.00192.

Omar NN, Mosbah RA, Sarawi WS, Rashed MM, Badr AM. Rifaximin protects against malathion-induced rat testicular toxicity: a possible clue on modulating gut microbiome and inhibition of oxidative stress by mitophagy. Molecules. 2022;27:4069. http://doi.org/10.3390/molecules27134069.

Onishi M, Okamoto K. Mitochondrial clearance: Mechanisms and roles in cellular fitness. FEBS Lett. 2021;595:1239-63. http://doi.org/10.1002/1873-3468.14060.

Park J-H, Kotani T, Konno T, et al. Promotion of intestinal epithelial cell turnover by commensal bacteria: Role of short-chain fatty acids. PLoS ONE. 2016;11:e0156334. http://doi.org/10.1371/journal.pone.0156334.

Parséus A, Sommer N, Sommer F, et al. Microbiota-induced obesity requires farnesoid X receptor. Gut. 2017;66:429-37. http://doi.org/10.1136/gutjnl-2015-310283.

Perez-Carreras M, Del HP, Martin MA, et al. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology. 2003;38:999-1007. http://doi.org/10.1002/hep.1840380426.

Perino A, Demagny H, Velazquez-Villegas LA, Schoonjans K. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol. Rev. 2021;101:683-731. http://doi.org/10.1152/physrev.00049.2019.

Piccinin E, Villani G, Moschetta A. Metabolic aspects in MASLD, MASH and hepatocellular carcinoma: the role of PGC1 coactivators. Nat Rev Gastroenterol Hepatol. 2019;16:160-74. http://doi.org/10.1038/s41575-018-0089-3.

Piccinin E, Arconzo M, Matrella ML, et al. Intestinal Pgc1α ablation protects from liver steatosis and fibrosis. JHEP Rep. 2023 Jul 19;5(11):100853. http://doi.org/10.1016/j.jhepr.2023.100853.

Poland JC, Flynn CR. Bile acids, their receptors, and the gut microbiota. Physiology. 2021;36:235-45. http://doi.org/10.1152/physiol.00028.2020.

Portincasa P, Di Ciaula A, Garruti G, Vacca M, De Angelis M, Wang DQ. Bile acids and GPBAR-1: dynamic interaction involving genes, environment and gut microbiome. Nutrients. 2020;12:3709. https://doi.org/10.3390/nu12123709.

Portincasa P, Bonfrate L, Vacca M, et al. Gut microbiota and short chain fatty acids: implications in glucose homeostasis.Int J Mol Sci. 2022;23:1105. https://doi.org/10.3390%2Fijms23031105.

Portincasa P, Khalil M, Graziani A, Garruti G, Di Ciaula A, Bonfrate L. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations? Internal Medicine. 2023. https://doi.org/10.1016/j.ejim.2023.10.002.

Puri P, Daita K, Joyce A, et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology. 2018;67:534-48. http://doi.org/10.1002/hep.29359.

Qiao S, et al. Activation of a specific gut bacteroides-folate-liver axis benefits for the alleviation of nonalcoholic hepatic steatosis. Cell Rep. 2020;32:108005. http://doi.org/10.1016/j.celrep.2020.108005.

Raimondi F, Santoro P, Barone MV, et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation. Am J Physiol Gastrointest Liver Physiol. 2008;294:G906-G913. http://doi.org/10.1152/ajpgi.00043.2007.

Raman M, Ahmed I, Gillevet PM, et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013;11(e1-3):868-75. https://doi.org/10.1016/j.cgh.2013.02.015.

Rector RS, Morris EM, Ridenhour S, et al. Selective hepatic insulin resistance in a murine model heterozygous for a mitochondrial trifunctional protein defect. Hepatology. 2013;57:2213-23. http://doi.org/10.1002/hep.26285.

Reynes B, Palou M, Rodriguez AM, Palou A. Regulation of adaptive thermogenesis and browning by prebiotics and postbiotics.Front Physiol. 2018;9:1908. https://doi.org/10.3389/fphys.2018.01908.

Richardson JP, Willems HME, Moyes DL, et al. Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infect Immun. 2018;86(2). https://doi.org/10.1128/iai.00645-17.

Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21:e49799. http://doi.org/10.15252/embr.201949799.

Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology. 2016;31(Bethesda):283-93. http://doi.org/10.1152/physiol.00041.2015.

Salamati S, Martins C, Kulseng B. Baker’s yeast (Saccharomyces cerevisiae) antigen in obese and normal weight subjects. Clin Obes. 2015;5(1):42-7. http://doi.org/10.1111/cob.12079.

Salamon D, Sroka-Oleksiak A, Gurgul A, et al. Analysis of the gut mycobiome in adult patients with type 1 and type 2 diabetes using next-generation sequencing (NGS) with increased sensitivity-pilot study. Nutrients. 2021;13(4). https://doi.org/10.3390%2Fnu13041066.

Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A. 2008;105:16767-72. https://doi.org/10.1073/pnas.0808567105.

Sang C, Wang X, Zhou K, et al. Bile acid profiles are distinct among patients with different etiologies of chronic liver disease. J Proteome Res. 2021;20:2340-51. http://doi.org/10.1021/acs.jproteome.0c00852.

Satapati S, Sunny NE, Kucejova B, et al. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res. 2012;53:1080-92. http://doi.org/10.1194/jlr.M023382.

Satapati S, Kucejova B, Duarte JA, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Investig. 2015;125:4447-62. http://doi.org/10.1172/JCI82204.

Schwimmer JB, Johnson JS, Angeles JE, et al. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology. 2019;157:1109-22. http://doi.org/10.1053/j.gastro.2019.06.028.

Seo B, et al. Roseburia spp. abundance associates with alcohol consumption in humans and its administration ameliorates alcoholic fatty liver in mice. Cell Host Microbe. 2020;27:25-40. http://doi.org/10.1016/j.chom.2019.11.001.

Serviddio G, Giudetti AM, Bellanti F, et al. Oxidation of hepatic carnitine palmitoyl transferase-I (CPT-I) impairs fatty acid beta-oxidation in rats fed a methionine-choline deficient diet. PLoS ONE. 2011;6:e24084. http://doi.org/10.1371/journal.pone.0024084.

Shami GJ, Cheng D, Verhaegh P, Koek G, Wisse E, Braet F. Three-dimensional ultrastructure of giant mitochondria in human non-alcoholic fatty liver disease. Sci Rep. 2021;11:1-14. http://doi.org/10.1038/s41598-021-82884-z.

Shandilya S, Kumar S, Jha NK, Kesari KK, Ruokolainen J. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J Adv Res. 2021;38:223-44. http://doi.org/10.1016/j.jare.2021.09.005.

Shen F, Zheng RD, Sun XQ, Ding WJ, Wang XY, Fan JG. Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int. 2017;16:375-81. http://doi.org/10.1016/s1499-3872(17)60019-5.

Shoukat M, Ullah F, Tariq MN, et al. Profiling of potential pathogenic candida species in obesity. Microb Pathog. 2023;174:105894. http://doi.org/10.1016/j.micpath.2022.105894.

Sikalidis AK, Maykish A. The gut microbiome and type 2 diabetes mellitus: discussing a complex relationship. Biomedicines. 2020;8:8. http://doi.org/10.3390/biomedicines8010008.

Sohn M, Jung H, Lee WS, Kim TH, Lim S. Effect of lactobacillus plantarum LMT1-48 on body fat in overweight subjects: A randomized, double-blind, placebo-controlled trial. Diabetes Metab J. 2023;47:92-103. http://doi.org/10.4093/dmj.2021.0370.

Sookoian S, Flichman D, Scian R, et al. Mitochondrial genome architecture in non-alcoholic fatty liver disease. J Pathol. 2016;240:437-49. http://doi.org/10.1002/path.4803.

Sudun, Wulijideligen, Arakawa K, Miyamoto M, Miyamoto T. Interaction between lactic acid bacteria and yeasts in airag, an alcoholic fermented milk. Anim Sci J. 2013 Jan;84(1):66-74. http://doi.org/10.1111/j.1740-0929.2012.01035.x.

Sun SS, Wang K, Ma K, Bao L, Liu HW. An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota Chin J Nat Med. 2019;17(1):3-14. http://doi.org/10.1016/s1875-5364(19)30003-2.

Sun S, Wang K, Sun L, et al. Therapeutic manipulation of gut microbiota by polysaccharides of Wolfiporia cocos reveals the contribution of the gut fungi-induced PGE(2) to alcoholic hepatic steatosis Gut Microb. 2020;12(1):1830693. https://doi.org/10.1080/19490976.2020.1830693.

Sunny NE, Parks EJ, Browning JD, Burgess SC. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 2011;14:804-10. http://doi.org/10.1016/j.cmet.2011.11.004.

Tan X, Liu Y, Long J, et al. Trimethylamine N-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of Farnesoid X receptor signaling in nonalcoholic fatty liver disease. Mol Nutr Food Res. 2019;63e1900257. http://doi.org/10.1002/mnfr.201900257.

Taylor PR, Brown GD, Reid DM, et al. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol. 2002;169(7):3876-82. http://doi.org/10.4049/jimmunol.169.7.3876.

Theel ES, Doern CD. beta-D-glucan testing is important for diagnosis of invasive fungal infections. J Clin Microbiol. 2013;51(11):3478-83. http://doi.org/10.1128/jcm.01737-13.

Trauner M, Fuchs CD. Novel therapeutic targets for cholestatic and fatty liver disease. Gut. 2022;71:194-209. http://doi.org/10.1136/gutjnl-2021-324305.

Ucar F, Sezer S, Erdogan S, Akyol S, Armutcu F, Akyol O. The relationship between oxidative stress and nonalcoholic fatty liver disease: Its effects on the development of nonalcoholic steatohepatitis. Redox Rep. 2013;18:127-33. http://doi.org/10.1179/1351000213Y.0000000050.

Vallianou N, Christodoulatos GS, Karampela I, et al. Understanding the role of the gut microbiome and microbial metabolites in non-alcoholic fatty liver disease: current evidence and perspectives. Biomolecules. 2021;12:56. http://doi.org/10.3390/biom12010056.

Verma AH, Zafar H, Ponde NO, et al. IL-36 and IL-1/IL-17 drive immunity to oral candidiasis via parallel mechanisms. J Immunol. 2018;201(2):627-34. http://doi.org/10.4049/jimmunol.1800515.

Vezza T, Abad-Jiménez Z, Marti-Cabrera M, Rocha M, Víctor VM. Microbiota-mitochondria inter-talk: a potential therapeutic strategy in obesity and type 2 diabetes. Antioxidants. 2020;9:848. http://doi.org/10.3390/antiox9090848.

Wan X, Zhu X, Wang H, et al. PGC1α protects against hepatic steatosis and insulin resistance via enhancing IL10-mediated anti-inflammatory response. FASEB J. 2020;34:10751-61. http://doi.org/10.1096/fj.201902476R.

Wang A, Keita V, Phan V, et al. Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. Am J Pathol. 2014;184:2516-27. http://doi.org/10.1016/j.ajpath.2014.05.019.

Wang MX, Luo W, Ye L, et al. Dectin-1 plays a deleterious role in high fat diet-induced NAFLD of mice through enhancing macrophage activation. Acta Pharmacol Sin. 2023;44(1):120-32. http://doi.org/10.1038/s41401-022-00926-2.

Wang SW, Sheng H, Bai YF, et al. Neohesperidin enhances PGC-1α-mediated mitochondrial biogenesis and alleviates hepatic steatosis in high fat diet fed mice. Nutr. Diabetes. 2020;10:27. http://doi.org/10.1038/s41387-020-00130-3.

Wang W, Zhong X, Guo J. Role of 2-series prostaglandins in the pathogenesis of type 2 diabetes mellitus and non-alcoholic fatty liver disease (Review). Int J Mol Med. 2021;47(6). https://doi.org/10.3892%2Fijmm.2021.4947.

Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57-63. http://doi.org/10.1038/nature09922.

Wang Z, Ma K, Liu C, et al. 5-Aminolevulinic acid combined with sodium ferrous citrate (5-ALA/SFC) ameliorated liver injury in a murine acute graft-versus-host disease model by reducing inflammation responses through PGC1-α activation. Drug Discov Ther. 2021;14:304-12. http://doi.org/10.5582/ddt.2020.03112.

Wu P, Zhao J, Guo Y, Yu Y, Wu X, Xiao H. Ursodeoxycholic acid alleviates nonalcoholic fatty liver disease by inhibiting apoptosis and improving autophagy via activating AMPK. Biochem Biophys Res Commun. 2020;529:834-8. http://doi.org/10.1016/j.bbrc.2020.05.128.

Xie G, Yan A, Lin P, Wang Y, Guo L. Trimethylamine N-oxide-a marker for atherosclerotic vascular disease. Rev Cardiovasc Med. 2021;22:787-97. http://doi.org/10.31083/j.rcm2203085.

Xu Z, Jiang W, Huang W, et al. Gut microbiota in patients with obesity and metabolic disorders — a systematic review. Genes Nutr. 2022;17:2. http://doi.org/10.1186/s12263-021-00703-6.

Xue R, Su L, Lai SJ, et al. Bile acid receptors and the gut-liver axis in nonalcoholic fatty liver disease. Cells. 2021;10:2806. http://doi.org/10.3390/cells10112806.

Yan J, Xue Q, Chen X, et al. Probiotic-fermented rice buckwheat alleviates high-fat diet-induced hyperlipidemia in mice by suppressing lipid accumulation and modulating gut microbiota. Food Res. Int. 2022;155:111125. http://doi.org/10.1016/j.foodres.2022.111125.

Yao N, Yang Y, Li X, et al. Effects of dietary nutrients on fatty liver disease associated with metabolic dysfunction (MAFLD): Based on the intestinal-hepatic axis. Front. Nutr. 2022;9:906511. http://doi.org/10.3389/fnut.2022.906511.

Yardeni T, Tanes CE, Bittinger K, et al. Host mitochondria influence gut microbiome diversity: A role for ROS. Sci Signal. 2019;12:eaaw3159. http://doi.org/10.1126/scisignal.aaw3159.

Yokota A, Fukiya S, Islam KB, et al. Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes. 2012;3:455-9. https://doi.org/10.4161/gmic.21216.

Yoo W, Zieba JK, Foegeding NJ, et al. High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science. 2021;373:813-8. http://doi.org/10.1126/science.aba3683.

Yoshida N, Emoto T, Yamashita T, et al. Bacteroides vulgatus and bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation. 2018;138:2486-98. http://doi.org/10.1161/circulationaha.118.033714.

Yuan J, Chen C, Cui J, et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumonia. Cell Metabol. 2019;30(6):1172. http://doi.org/10.1016/j.cmet.2019.08.018.

Zeng S, Schnabl B. Roles for the mycobiome in liver disease. Liver Int. 2022;42:729-41. http://doi.org/10.1111/liv.15160.

Zhang IW, López-Vicario C, Duran-Güell M, Clària J. Mitochondrial dysfunction in advanced liver disease: Emerging concepts. Front Mol Biosci. 2021;8:772174. http://doi.org/10.3389/fmolb.2021.772174.

Zhang J, Zhao Y, Wang S, et al. CREBH alleviates mitochondrial oxidative stress through SIRT3 mediating deacetylation of MnSOD and suppression of Nlrp3 inflammasome in NASH. Free Radic Biol Med. 2022;190:28-41. http://doi.org/10.1016/j.freeradbiomed.2022.07.018.

Zhang Q, Hu N. Effects of metformin on the gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2020;13:5003-14. http://doi.org/10.2147/dmso.s286430.

Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104-7. http://doi.org/10.1038/nature08780.

Zhang Q, Xing W, Wang Q, et al. Gut microbiota–mitochondrial inter-talk in non-alcoholic fatty liver disease. Front Nutr. 2022;9:934113. http://doi.org/10.3389/fnut.2022.934113.

Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013;11:639-47. http://doi.org/10.1038/nrmicro3089.

Zhao Z, Chen L, Zhao Y, et al. Lactobacillus plantarum NA136 ameliorates nonalcoholic fatty liver disease by modulating gut microbiota, improving intestinal barrier integrity, and attenuating inflammation. Appl Microbiol Biotechnol. 2020;104:527-82. http://doi.org/10.1007/s00253-020-10633-9.

Zheng Z, Wang B. The gut-liver axis in health and disease: The role of gut microbiota-derived signals in liver injury and regeneration. Front Immunol. 2021;12:775526. http://doi.org/10.3389/fimmu.2021.775526.

Zhong F, Liang S, Zhong Z. Emerging role of mitochondrial dna as a major driver of inflammation and disease progression. Trends Immunol. 2019;40:1120-33. http://doi.org/10.1016/j.it.2019.10.008.

Zhou X, Zhang X, Yu J. Gut mycobiome in metabolic diseases: Mechanisms and clinical implication. Biomed J. Available online 25 June 2023, 100625. http://doi.org/10.1016/j.bj.2023.100625.

Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology. 2013;57:601-9. http://doi.org/10.1002/hep.26093.

Zou Y, Xue W, Lin X, Lv M, Luo G, Dai Y, Sun H, Liu SW, Sun CH, Hu T, Xiao L. Butyribacter intestini gen. nov., sp. nov., a butyric acid-producing bacterium of the family Lachnospiraceae isolated from human faeces, and reclassification of Acetivibrio ethanolgignens as Acetanaerobacter ethanolgignens gen. nov., comb. Nov Syst Appl Microbiol. 2021;44:1201. http://doi.org/10.1016/j.syapm.2021.126201.

##submission.downloads##

Опубліковано

2024-09-19

Номер

Розділ

Огляди