Кишкова проникність та її роль у патогенезі та прогресуванні неалкогольної жирової хвороби печінки. Огляд літератури
DOI:
https://doi.org/10.30978/MG-2023-1-55Ключові слова:
кишкова проникність, ліпополісахарид, неалкогольна жирова хвороба печінки, кишковий бар’єрАнотація
Проблема неалкогольної жирової хвороби печінки (НАЖХП) є актуальною для світової медицини. Виявлено її асоціацію з «нездоровим» способом життя та метаболічними порушеннями. Наголошено на важливій ролі дисбіозу кишкової мікробіоти у патогенезі НАЖХП та функціонуванні осі кишечник — печінка. Наведено дані щодо структури і функціювання кишкового бар’єра у фізіологічних умовах. Доведено, що наявність дисбіотичних змін у мікробіоті відіграє важливу роль у порушенні бар’єрної функції шлунково‑кишкового тракту, що підвищує рівень фізіологічної транслокації як бактерій, так і їхніх токсинів та продуктів життєдіяльності. Частина шкідливих продуктів надходить через портальну вену у печінку (ендотоксинемія). Перевантаження антигенами призводить до розвитку та прогресування НАЖХП (аж до цирозу печінки). Наголошено, що кишковий бар’єр є динамічним і чутливим до змін, що відбуваються в кишечнику. У пацієнтів з НАЖХП порівняно зі здоровими особами часто спостерігається підвищена кишкова проникність та синдром надмірного бактеріального росту, що є джерелом підвищеної ендотоксемії. У низці досліджень виявлено, що у пацієнтів з НАЖХП ступінь проникності кишечника корелював з тяжкістю стеатозу. Чинниками, які найбільше впливають на кишкову проникність у пацієнтів з НАЖХП, є мікробне середовище, жовчні кислоти, рівень фекальних коротколанцюгових жирних кислот (переважно бутирату), метаболізм незамінної ароматичної амінокислоти триптофану, а також характер харчування, алкоголь, лікарські препарати, стрес і рівень фізичної активності, які діють або безпосередньо, або через індукцію дисбактеріозу кишкової мікробіоти. Зазначено, що підвищена проникність кишечника та її наслідок — бактеріальна транслокація беруть участь у розвитку таких ускладнень, як спонтанний бактеріальний перитоніт, гепаторенальний синдром, тромбоз ворітної вени, печінкова енцефалопатія, гепатоцелюлярна карцинома.
Посилання
Adams LA, Wang Z, Liddle C et al. Bile acids associate with specific gut microbiota, low-level alcohol consumption and liver fibrosis in patients with non-alcoholic fatty liver disease. Liver Int. 2020;40(6):1356-1365. doi: 10.1111/liv.14453.
Agus A, Planchais J, Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe. 2018;23:716-724. doi: 10.1016/j.chom.2018.05.003].
Albillos A, De Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol. 2020;72:558-577. doi: 10.1016/j.jhep.2019.10.003.
Alvarez-Mercado AI, Navarro-Oliveros M, Robles-Sanchez C et al. Microbial Population Changes and Their Relationship with Human Health and Disease. Microorganisms. 2019;7:68. doi: 10.3390/microorganisms7030068.
Aron-Wisnewsky J, Vigliotti C, Witjes J, Le P, Holleboom AG et al. Gut Microbiota and Human NAF.LD: Disentangling Microbial Signatures From Metabolic Disorders. Nat Rev Gastroenterol. Hepatol. 2020;17:279-297. doi: 10.1038/s41575-020-0269-9.
Assimakopoulos SF, Tsamandas AC, Tsiaoussis GI et al. Altered intestinal tight junctions’ expression in patients with liver cirrhosis: a pathogenetic mechanism of intestinal hyperpermeability. Eur J Clin Invest. 2012;42(4):439-446. doi: 10.1111/j.1365-2362.2011.02609.x.
Baffy G. Potential mechanisms linking gut microbiota and portal hypertension. Liver Int. 2019;39:598-609. doi: 10.1111/liv.13986.
Bajaj JS, Kakiyama G, Zhao D et al. Continued alcohol misuse in human cirrhosis is associated with an impaired gut–liver axis. Alcohol Clin Exp Res. 2017;41:1857-1865. doi: 10.1111/acer.13498.
Bartram H-P, Scheppach W, Schmid H et al. Proliferation of Human Colonic Mucosa as an Intermediate Biomarker of Carcinogenesis: effects of Butyrate, Deoxycholate, Calcium, Ammonia, and pH. Cancer Res. 1993;53 (14):3283-3288.
Baumann A, Nier A, Hernández-Arriaga A et al. Toll-like receptor 1 as a possible target in non-alcoholic fatty liver disease. Sci Rep. 2021; 11:17815. doi: 10.1038/s41598-021-97346-9.
Bellot P, García-Pagán JC, Francés R et al. Bacterial DNA. translocation is associated with systemic circulatory abnormalities and intrahepatic endothelial dysfunction in patients with cirrhosis. Hepatology. 2010;52:2044-2052.
Bennett KM, Walker SL, Lo DD. Epithelial microvilli establish an electrostatic barrier to microbial adhesion. Infect Immun. 2014;82:2860-2871.
Biolato M, Manca F, Marrone G et al. Intestinal permeability after Mediterranean diet and low-fat diet in non-alcoholic fatty liver disease. World J Gastroenterol. 2019 Jan 28; 25 (4):509-520. doi: 10.3748/wjg.v25.i4.509.
Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD et al. Intestinal permeability-a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189.
Boursier J, Diehl AM. Nonalcoholic fatty liver disease and the gut microbiome. Clin Liver Dis. 2016;20(2):263-275. doi: 10.1016/j.cld.2015.10.012.
Brandl K, Kumar V, Eckmann L. Gut-liver axis at the frontier of host-microbial interactions. Am J Physiol Gastrointest Liver Physiol. 2017;312:G413–G419.
Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palù G, Martines D. Increased intestinal permeability in obese mice: New evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Liver Physiol. 2007;292:G518–G525. doi: 10.1152/ajpgi.00024.2006.
Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761-1772.
Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470-1481.
Carambia A, Freund B, Schwinge D et al. TGF-β-dependent induction of CD4+CD25+Foxp3+ Tregs by liver sinusoidal endothelial cells. J Hepatol. 2014;61:594-599. doi: 10.1016/j.jhep.2014.04.027.
Cariello R, Federico A, Sapone A et al. Intestinal permeability in patients with chronic liver diseases: Its relationship with the aetiology and the entity of liver damage. Dig Liver Dis. 2010;42:200-204.
Casas-Grajales S, Muriel P. Antioxidants in liver health. World J Gastrointest Pharmacol Ther. 2015;6:59-72.
Chen D, Le TH, Shahidipour H, Read SA, Ahlenstiel G. The role of gut-derived microbial antigens on liver fibrosis initiation and progression. Cells. 2019;8:11. doi: 10.3390/cells8111324.
Chen J, Vitetta L. Inflammation-Modulating Effect of Butyrate in the Prevention of Colon Cancer by Dietary Fiber. Clin. Colorectal Cancer. 2018;17:e541-e544. doi: 10.1016/j.clcc.2018.05.001.
Chen J, Zhao KN, Vitetta L. Effects of Intestinal Microbial-Elaborated Butyrate on Oncogenic Signaling Pathways. Nutrients. 2019;11:1026. doi: 10.3390/nu11051026.
Chen J, Thomsen M, Vitetta L. Interaction of Gut Microbiota With Dysregulation of Bile Acids in the Pathogenesis of Nonalcoholic Fatty Liver Disease and Potential Therapeutic Implications of Probiotics. J Cell Biochem. 2019;120:2713-2720. doi: 10.1002/jcb.27635.
Chen J, Vitetta L. Letter to the Editors: Could Butyrate Be Incorporated With Farnesoid X Receptor Agonist Cilofexor to Enhance Primary Sclerosing Cholangitis Treatment? Hepatology. 2020 doi: 10.1002/hep.31269.
Chen J, Vitetta L. The Role of Butyrate in Attenuating Pathobiont-Induced Hyperinflammation. Immune Netw. 2020;20:e15. doi: 10.4110/in.2020.20.e15.
Chen J, Vitetta L. Gut Microbiota Metabolites in NAFLD Pathogenesis and Therapeutic ImplicationsInt J Mol Sci. 2020 Aug; 21 (15):5214. doi: 10.3390/ijms21155214.
Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am. J. Physiol. Gastrointest. Liver Physiol. 2020;318:g554–g573. doi: 10.1152/ajpgi.00223.2019.
Chu H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: A microbiota-centered view of non-alcoholic fatty liver disease. Gut. 2018;68:359-370. doi: 10.1136/gutjnl-2018-316307.
Chu H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut. 2019;68(2):359-370.
Cichoż-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 2014;20:8082-8091.
Cornet A, Savidge TC, Cabarrocas J, Deng WL, Colombel JF et al. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn’s disease? Proc Natl Acad Sci USA. 2001;98:13306-13311.
Corthesy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol. 2013;4:185. 10.3389/fimmu.2013.00185.
Dapito DH, Mencin A, Gwak GY et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21:504-516. doi: 10.1016/j.ccr.2012.02.007.
De Munck TJI, Xu P, Verwijs HJA, Masclee AAM, Jonkers D et al. Intestinal permeability in human nonalcoholic fatty liver disease: A systematic review and meta-analysis. Liver Int. 2020 Dec; 40 (12):2906-2916. doi: 10.1111/liv.14696.
Delzenne NM, Knudsen C, Beaumont M, Rodriguez J, Neyrinck AM, Bindels LB. Contribution of the gut microbiota to the regulation of host metabolism and energy balance: A focus on the gut-liver axis. Proc Nutr Soc. 2019;78:319-328. doi: 10.1017/S0029665118002756.
de Souza-Cruz S, Victória MB, Tarragô AM, da Costa AG, Pimentel JP et al. Liver and blood cytokine microenvironment in HCV patients is associated to liver fibrosis score: a proinflammatory cytokine ensemble orchestrated by TNF and tuned by IL-10. BMC Microbiol. 2016;16:3.
Dhiman RK. Gut microbiota and hepatic encephalopathy. Metab Brain Dis. 2013;28:321-326. doi: 10.1007/s11011-013-9388-0.
Duparc T, Plovier H, Marrachelli VG, Van Hul M, Essaghir A et al. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut. 2017;66:620-632.
Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020;73:202-209. doi: 10.1016/j.jhep.2020.03.039.
Etienne-Mesmin L, Vijay-Kumar M, Gewirtz AT, Chassaing B. Hepatocyte Toll-Like Receptor 5 Promotes Bacterial Clearance and Protects Mice Against High-Fat Diet-Induced Liver Disease. Cell Mol Gastroenterol Hepatol. 2016;2:584-604.
Ferolla SM, Couto CA, Costa-Silva L, Armiliato GN, Pereira CA et al. Beneficial Effect of Synbiotic Supplementation on Hepatic Steatosis and Anthropometric Parameters, But Not on Gut Permeability in a Population with Nonalcoholic Steatohepatitis. Nutrients. 2016;8:397. doi: 10.3390/nu8070397.
Ferslew BC, Xie G, Johnston CK et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig Dis Sci. 2015;60 (11):3318-3328. doi: 10.1007/s10620-015-3776-8.
Flandez M, Guilmeau S, Blache P, Augenlicht LH. KLF4 regulation in intestinal epithelial cell maturation. Exp Cell Res. 2008;314 (20):3712-3723. doi: 10.1016/j.yexcr.2008.10.004.
Fujinaga Y, Kawaratani H, Kaya D et al. Effective Combination Therapy of Angiotensin-II Receptor Blocker and Rifaximin for Hepatic Fibrosis in Rat Model of Nonalcoholic Steatohepatitis Int J Mol Sci. 2020 Aug; 21 (15):5589. doi: 10.3390/ijms21155589.
Fukui H. Improve gut microbiome: A new horizon of cancer therapy. Hepatobiliary Surg. Nutr. 2017;6:424-428. doi: 10.21037/hbsn.2017.08.04.
Furuta GT, Turner JR, Taylor CT et al. Hypoxia-inducible factor 1–dependent induction of intestinal trefoil factor protects barrier function during hypoxia. J Exp Med. 2001;193(9):1027-1034. doi: 10.1084/jem.193.9.1027.
Gäbele E, Mühlbauer M, Dorn C, Weiss TS, Froh M, Schnabl B et al. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem. Biophys. Res. Commun. 2008;376:271-276. doi: 10.1016/j.bbrc.2008.08.096.
Garcia-Martinez R, Noiret L, Sen S, Mookerjee R, Jalan R. Albumin infusion improves renal blood flow autoregulation in patients with acute decompensation of cirrhosis and acute kidney injury. Liver Int. 2015;35:335-343.
Giorgio V, Miele L, Principessa L et al. Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis. 2014;46(6):556-560. doi: 10.1016/j.dld.2014.02.010.
Gómez-Hurtado I, Moratalla A, Moya-Pérez Á al. Role of interleukin 10 in norfloxacin prevention of luminal free endotoxin translocation in mice with cirrhosis. J Hepatol. 2014;61:799-808.
Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol (2009) 124:3-20; quiz 21-2. 10.1016/j.jaci.2009.05.038.
Hanouneh MA, Hanouneh IA, Hashash JG et al. The role of rifaximin in the primary prophylaxis of spontaneous bacterial peritonitis in patients with liver cirrhosis. J Clin Gastroenterol. 2012;46:709-715.
Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science. 2010;328:1705-1709.
Harte AL, Da Silva NF, Creely SJ, McGee KC, Billyard T et al. Elevated endotoxin levels in non-alcoholic fatty liver disease. J Inflamm. Lond. 2010;7:15. doi: 10.1186/1476-9255-7-15.
Hartmann P, Haimerl M, Mazagova M, Brenner DA, Schnabl B. Toll-like receptor 2-mediated intestinal injury and enteric tumor necrosis factor receptor I contribute to liver fibrosis in mice. Gastroenterology. 2012;143:1330-1340.e1.
Hartmann P, Chen P, Wang HJ, Wang L, McCole DF et al. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology. 2013;58:108-119.
Haub S, Ritze Y, Ladel I, Saum K, Hubert A et al. Serotonin receptor type 3 antagonists improve obesity-associated fatty liver disease in mice. J Pharmacol. 2011;339(3):790-798. doi: 10.1124/jpet.111.181834.
Haub S, Kanuri G, Volynets V, Brune T, Bischoff SC, Bergheim I. Serotonin reuptake transporter (SERT) plays a critical role in the onset of fructose-induced hepatic steatosis in mice. Am J Physiol-Gastrointest Liver Physiol. 2010;298(3):G335–G344. doi: 10.1152/ajpgi.00088.2009.
Horst AK, Neumann K, Diehl L, Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol. 2016;13:277-292. doi: 10.1038/cmi.2015.112.
Huang LT, Hung JF, Chen CC, Hsieh CS, Yu HR, Hsu CN, Tain YL. Endotoxemia exacerbates kidney injury and increases asymmetric dimethylarginine in young bile duct-ligated rats. Shock. 2012;37:441-448.
Inagaki T, Moschetta A, Lee Y-K., Peng L, Zhao G, Downes M et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci. 2006;103 (10):3920-3925. doi: 10.1073/pnas.0509592103.
Jadhav K, Cohen TS. Can You Trust Your Gut? Implicating a Disrupted Intestinal Microbiome in the Progression of NAFLD/NASH. Front Endocrinol (Lausanne). 2020; 11:592157. doi: 10.3389/fendo.2020.592157.
Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015;16:164-177.
Jiao N, Baker SS, Chapa-Rodriguez A, Liu W, Nugent CA, Tsompana M et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut. 2018;67 (10):10. doi: 10.1136/gutjnl-2017-314307.
Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A. 2008;105:15064-15069.
Johansson ME, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol. 2016;16:639-49. 10.1038/nri.2016.88.
Kalambokis GN, Mouzaki A, Rodi M, Pappas K, Fotopoulos A et al. Rifaximin improves systemic hemodynamics and renal function in patients with alcohol-related cirrhosis and ascites. Clin Gastroenterol Hepatol. 2012;10:815-818.
Kapil S, Duseja A, Sharma BK, Singla B, Chakraborti A, Das A et al. Small intestinal bacterial overgrowth and toll-like receptor signaling in patients with non-alcoholic fatty liver disease. J Gastroenterol. Hepatol. 2015;31:213-221. doi: 10.1111/jgh.13058.
Karimi MH, Geramizadeh B, Malek-Hosseini SA. Tolerance Induction in Liver. Int. J. Organ Transplant. Med. 2015;6:45-54.
Kavanagh K, Wylie AT, Tucker KL, Hamp TJ, Gharaibeh RZ, Fodor AA, Cullen JM. Dietary fructose induces endotoxemia and hepatic injury in calorically controlled primates. Am J Clin Nutr. 2013;98:349-357.
Kelly CJ, Glover LE, Campbell EL, Kominsky DJ, Ehrentraut SF et al. Fundamental role for HIF-1α in constitutive expression of human β defensin-1. Mucosal Immunol. 2013;6(6):1110-1118. doi: 10.1038/mi.2013.6.
Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz C, Bayless A et al. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF. Augments Tissue Barrier Function. Cell Host Microbe. 2015; 17 (5):662-671. doi: 10.1016/j.chom.2015.03.005.
Keshavarzian A, Farhadi A, Forsyth CB et al. Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J Hepatol. 2009;50:538-547.
Kim D, Kim H, Jeong D et al. Kefir Alleviates Obesity and Hepatic Steatosis in High-Fat Diet-Fed Mice by Modulation of Gut Microbiota and Mycobiota: Targeted and Untargeted Community Analysis With Correlation of Biomarkers. J Nutr Biochem. 2017;44:35-43. doi: 10.1016/j.jnutbio.2017.02.014.
Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010;12:319-330.
Kirpich IA, Marsano LS, McClain CJ. Gut-liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem. 2015;48:923-930.
Knittel T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat. J Hepatol. 1999 Jan;30(1):48-60. doi: 10.1016/s0168-8278 (99)80007-5.
Krause P, Morris V, Greenbaum JA, Park Y, Bjoerheden U et al. IL-10-producing intestinal macrophages prevent excessive antibacterial innate immunity by limiting IL-23 synthesis. Nat Commun. 2015;6:7055.
Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134:657-667.
Lambertz J, Weiskirchen S, Landert S, Weiskirchen R. Fructose: A Dietary Sugar in Crosstalk with Microbiota Contributing to the Development and Progression of Non-Alcoholic Liver Disease. Front Immunol. 2017;8:1159.
Lanthier N, Vanuytsel T. Metabolic dysfunction-associated fatty liver disease: A new clearer nomenclature with positive diagnostic criteria. Acta Gastro-Enterol. Belg. 2020;83:513-515.
Laurans L, Venteclef N, Haddad Y, Chajadine M, Alzaid F, Metghalchi S et al. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat Med. 2018;24(8):1113-1120. doi: 10.1038/s41591-018-0060-4.
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651. 10.1101/cshperspect.a001651.
Lee G, You HJ, Bajaj JS, Joo SK, Yu J, Park S et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat Commun. 2020;11(1):4982. doi: 10.1038/s41467-020-18754-5.
Lee WY, Moriarty TJ, Wong CH, Zhou H, Strieter RM et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol. 2010;11:295-302.
Levy M, Thaiss CA, Zeevi D, Dohnalová L, Zilberman-Schapira G, Mahdi J et al. Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLR.P6 Inflammasome Signaling. Cell. 2015;163(6):1428-1443. doi: 10.1016/j.cell.2015.10.048.
Li M, Zhu L, Xie A, Yuan J. Oral administration of Saccharomyces boulardii ameliorates carbon tetrachloride-induced liver fibrosis in rats via reducing intestinal permeability and modulating gut microbial composition. Inflammation. 2015;38:170-179. doi: 10.1007/s10753-014-0019-7.
Liang S, Kisseleva T, Brenner DA. The Role of NADPH Oxidases (NOXs) in Liver Fibrosis and the Activation of Myofibroblasts. Front Physiol. 2016;7:17.
Liu Q, Liu Y, Li F, Gu Z, Liu M, Shao T et al. Probiotic culture supernatant improves metabolic function through FGF21-adiponectin pathway in mice. J Nutr Biochem. 2020;75:108256. doi: 10.1016/j.jnutbio.2019.108256.
Liu Y, Wang Y, Ni Y, Cheung CKY, Lam KSL, Wang Y et al. Gut Microbiome Fermentation Determines the Efficacy of Exercise for Diabetes Prevention. Cell Metab. 2020;31:77-91.e45. doi: 10.1016/j.cmet.2019.11.001.
Louis NA, Hamilton KE, Canny G, Shekels LL, Ho SB, Colgan SP. Selective induction of mucin-3 by hypoxia in intestinal epithelia. J Cell Biochem. 2006;99(6):1616-1627. doi: 10.1002/jcb.20947.
Luangmonkong T, Suriguga S, Mutsaers HAM, Groothuis GMM, Olinga P, Boersema M. Targeting Oxidative Stress for the Treatment of Liver Fibrosis. Rev Physiol Biochem Pharmacol. 2018;175:71-102.
Luther J, Garber JJ, Khalili H, Dave M, Bale SS, Jindal R et al. Hepatic Injury in Nonalcoholic Steatohepatitis Contributes to Altered Intestinal Permeability. Cell Mol Gastroenterol Hepatol. 2015;1:222-32. 10.1016/j.jcmgh.2015.01.001.
Lynch SV, Pedersen O. The Human Intestinal Microbiome in Health and Disease. N Engl J Med. 2016;375:2369-2379.
Ma L, Li H, Hu J, Zheng J, Zhou J, Botchlett R et al. Indole Alleviates Diet-Induced Hepatic Steatosis and Inflammation in a ManneInvolving Myeloid Cell PFK.FB3. Hepatology. 2020. doi: 10.1002/hep.31115.
Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004;303:1662-1665.
Madara JL, Stafford J. Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest. 1989;83:724-727.
Mailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA. Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for Human Health. Exerc. Sport Sci. Rev. 2019;47:75-85. doi: 10.1249/JES.0000000000000183.
Martín-Mateos R, Albillos A. The role of the gut-liver axis in metabolic dysfunction-associated fatty liver disease. Front Immunol. 2021;12:660179. doi: 10.3389/fimmu.2021.660179.
Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231-241.
Mei L, Tang Y, Li M, Yang P, Liu Z, Yuan J, Zheng P. Co-Administration of Cholesterol-Lowering Probiotics and Anthraquinone From Cassia Obtusifolia, L. Ameliorate Non-Alcoholic Fatty Liver. PLoS ONE. 2015;10:e0138078. doi: 10.1371/journal.pone.0138078.
Meijers B, Farré R, Dejongh S, Vicario M, Evenepoel P. Intestinal barrier function in chronic kidney disease. Toxins. 2018;10:298. doi: 10.3390/toxins10070298.
Miele L, Valenza V, La Torre G, Montalto M, Cammarota G et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49:1877-1887.
Miele L, Marrone G, Lauritano C, Cefalo C, Gasbarrini A et al. Gut-liver axis and microbiota in NAFLD: insight pathophysiology for novel therapeutic target. Curr Pharm Des. 2013;19:5314-5324.
Milosevic I, Vujovic A, Barac A, Djelic M, Korac M et al. Gut-Liver Axis, Gut Microbiota, and Its Modulation in the Management of Liver Diseases: A Review of the Literature. Int J Mol. Sci. 2019;20:395. doi: 10.3390/ijms20020395.
Miura K, Ishioka M, Iijima K. The Roles of the Gut Microbiota and Toll-like Receptors in Obesity and Nonalcoholic Fatty Liver Disease. J Obes Metab Syndr. 2017;26:86-96.
Méndez-Sánchez N, Bugianesi E, Gish RG et al. Global multi-stakeholder endorsement of the MAFLD definition. Lancet Gastroenterol. Hepatol. 2022;7:388-390. doi: 10.1016/S2468-1253 (22)00062-0.
Mokkala K, Pussinen P, Houttu N, Koivuniemi E, Vahlberg T, Laitinen K. The impact of probiotics and n-3 long-chain polyunsaturated fatty acids on intestinal permeability in pregnancy: a randomised clinical trial. Benef Microbes. 2018;9:199-208.
Mouries J, Brescia P, Silvestri A et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol. 2019;71(6):1216-1228. doi: 10.1016/j.jhep.2019.08.005.
Nagashimada M, Honda M. Effect of Microbiome on Non-Alcoholic Fatty Liver Disease and the Role of Probiotics, Prebiotics, and Biogenics. Int J Mol Sci. 2021 Aug; 22 (15):8008. doi: 10.3390/ijms22158008.
Nicoletti A, Ponziani FR, Biolato M, Valenza V, Marrone G et al. Intestinal permeability in the pathogenesis of liver damage: From non-alcoholic fatty liver disease to liver transplantation. World J Gastroenterol. 2019 Sep 7; 25 (33):4814-4834. doi: 10.3748/wjg.v25.i33.4814.
Nishimura N, Kaji K, Kitagawa K et al. Intestinal Permeability Is a Mechanical Rheostat in the Pathogenesis of Liver Cirrhosis. Int J Mol Sci. 2021 Jul; 22 (13):6921. doi: 10.3390/ijms22136921.
Novak EA, Mollen KP. Mitochondrial dysfunction in inflammatory bowel disease. Front Cell Dev Biol. 2015;3:62.
Nylander O, Pihl L. Luminal hypotonicity increases duodenal mucosal permeability by a mechanism involving 5-hydroxytryptamine. Acta Physiol. 2006;186(1):45-58. doi: 10.1111/j.1748-1716.2005.01507.x.
Okumura R, Takeda K. Maintenance of intestinal homeostasis by mucosal barriers. Inflamm Regen. 2018;38:5.
Parks DJ, Blanchard SG, Bledsoe RK et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999; 284 (5418):1365-1368. doi: 10.1126/science.284.5418.1365.
Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GM et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014;260:8-20.
Pijls KE, Koek GH, Elamin EE, de Vries H, Masclee AAM et al. Large intestine permeability is increased in patients with compensated liver cirrhosis. Am J Physiol Gastrointest. Liver Physiol. 2013;306(2):G147-G153.
Poeta M, Pierri L, Vajro P. Gut-Liver Axis Derangement in Non-Alcoholic Fatty Liver Disease Children. 2017;4:66. doi: 10.3390/children4080066.
Ponziani FR, Gerardi V, Gasbarrini A. Diagnosis and treatment of small intestinal bacterial overgrowth. Expert Rev Gastroenterol Hepatol. 2016;10:215-227.
Ponziani FR, Zocco MA, Cerrito L, Gasbarrini A, Pompili M. Bacterial translocation in patients with liver cirrhosis: physiology, clinical consequences, and practical implications. Expert Rev Gastroenterol Hepatol. 2018;12:641-656.
Puri P, Daita K, Joyce A, Mirshahi F, Santhekadur PK, Cazanave S et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology. 2018;67(2):534-548. doi: 10.1002/hep.29359.
Rainer F, Horvath A, Sandahl T, Leber B, Schmerboeck B, Blesl A et al. Soluble CD 163 and soluble mannose receptor predict survival and decompensation in patients with liver cirrhosis, and correlate with gut permeability and bacterial translocation. Aliment Pharmacol Ther. 2018;47:657-664. doi: 10.1111/apt.14474.
Rao M, Gershon MD. The bowel and beyond: The enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 2016;13:517. doi: 10.1038/nrgastro.2016.107.
Ray K. NAFLD. Leaky guts: intestinal permeability and NASH. Nat Rev Gastroenterol Hepatol. 2015;12:123.
Reiberger T, Ferlitsch A, Payer BA, Mandorfer M, Heinisch BB et al. Vienna Hepatic Hemodynamic Lab. Non-selective betablocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis. J Hepatol. 2013;58:911-921.
Ritze Y, Bardos G, Claus A, Ehrmann V, Bergheim I, Schwiertz A, Bischoff SC. Lactobacillus Rhamnosus GG Protects Against Non-Alcoholic Fatty Liver Disease in Mice. PLoS ONE. 2014;9:e80169. doi: 10.1371/journal.pone.0080169.
Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol. 2007;47:571-9. 10.1016/j.jhep.2007.04.019.
Roderfeld M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol. 2018;68-69:452-462.
Rokana N, Mallappa RH, Batish VK, Grover S. Interaction between putative probiotic Lactobacillus strains of Indian gut origin and Salmonella: impact on intestinal barrier function. LWT. 2017;84:851-860. doi: 10.1016/j.lwt.2016.08.021.
Sawada Y, Kawaratani H, Kubo T, Fujinaga Y, Fukurama M et al. Combining probiotics and an angiotensin-II type 1 receptor blocker has beneficial effects on hepatic fibrogenesis in a rat model of non-alcoholic steatohepatitis. Hepatol Res. 2019;49:284-295. doi: 10.1111/hepr.13281.
Scarpellini E, Valenza V, Gabrielli M, Lauritano EC, Perotti G et al. Intestinal Permeability in Cirrhotic Patients with and Without Spontaneous Bacterial Peritonitis: Is the Ring Closed? Am J Gastroenterol. 2010;105:323-327. doi: 10.1038/ajg.2009.558.
Schauber J, Svanholm C, Termén S, Iffl K, Menzel T et al. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut. 2003;52(5):735-741. doi: 10.1136/gut.52.5.735.
Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014; 146(6):1513-1524. doi: 10.1053/j.gastro.2014.01.020.
Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity. 2019;50(2):432-445. e7. doi: 10.1016/j.immuni.2018.12.018.
Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007;13:1324-32. 10.1038/nm1663.
Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol. 2012;590:447-458.
Serino M, Luche E, Gres S, Baylac A, Bergé M et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012;61:543-553.
Shah N, Dhar D, El Zahraa Mohammed F et al. Prevention of acute kidney injury in a rodent model of cirrhosis following selective gut decontamination is associated with reduced renal TLR4 expression. J Hepatol. 2012;56:1047-1053.
Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulinresistance. J Clin Invest. 2006;16(11):3015–25. 10.1172/JCI28898.
Shimada Y, Kinoshita M, Harada K et al. Commensal Bacteria-Dependent Indole Production Enhances Epithelial Barrier Function in the Colon. PLoS ONE. 2013;8:e80604. doi: 10.1371/journal.pone.0080604.
Singh N, Gurav A, Sivaprakasam S et al. Activation of Gpr109a, Receptor for Niacin and the Commensal Metabolite Butyrate, Suppresses Colonic Inflammation and Carcinogenesis. Immunity. 2014;40(1):128-139. doi: 10.1016/j.immuni.2013.12.007.
Sittipo P, Shim J-W, Lee YK. Microbial metabolites determine host health and the status of some diseases. Int J Mol Sci. 2019;20 (21):5296. doi: 10.3390/ijms20215296.
Spadoni I, Pietrelli A, Pesole G, Rescigno M. Gene expression profile of endothelial cells during perturbation of the gut vascular barrier. Gut Microbes. 2016;7:540-548.
Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol. 2017;17:761-773.
Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest. 2008.;118(2):JCI33194. doi: 10.1172/JCI33194.
Szabo G, Bala S, Petrasek J, Gattu A. Gut-liver axis and sensing microbes. Dig. Dis. 2010;28:737-744. doi: 10.1159/000324281.
Taleb S. Tryptophan Dietary Impacts Gut Barrier and Metabolic Diseases. Front Immunol. 2019;10:2113. doi: 10.3389/fimmu.2019.02113.
Taylor CT, Dzus AL, Colgan SP. Autocrine regulation of epithelial permeability by hypoxia: role for polarized release of tumor necrosis factor alpha. Gastroenterology. 1998;114:657-668.
Tawiah A, Cornick S, Moreau F, Gorman H, Kumar M et al. High MUC2 Mucin Expression and Misfolding Induce Cellular Stress, Reactive Oxygen Production, and Apoptosis in Goblet Cells. Am J Pathol. 2018;188:1354-1373.
Theocharidou E, Dhar A, Patch D. Gastrointestinal Motility Disorders and Their Clinical Implications in Cirrhosis. Gastroenterol Res Pract. 2017;2017:8270310.
Tian Y, Gui W, Koo I, Smith PB, Allman EL et al. The microbiome modulating activity of bile acids. Gut Microbes. 2020;11(4):979-996. doi: 10.1080/19490976.2020.1732268.
Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14:397-411.
Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799-809.
Utzeri E, Usai P. Role of non-steroidal anti-inflammatory drugs on intestinal permeability and nonalcoholic fatty liver disease. World J Gastroenterol. 2017;23:3954-3963.
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44-84.
Van Ampting MT, Schonewille AJ, Vink C, Brummer RJ, van der Meer R, Bovee-Oudenhoven IM. Intestinal barrier function in response to abundant or depleted mucosal glutathione in Salmonella-infected rats. BMC Physiol. 2009;9:6.
Van Herck MA, Vonghia L, Francque SM. Animal models of nonalcoholic fatty liver disease-a starter’s guide. Nutrients. 2017;9:10. doi: 10.3390/nu9101072.
Van Itallie CM, Holmes J, Bridges A et al. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci. 2008;121:298-305.
Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. 2014;36:157-165.
Vereecke L, Beyaert R, van Loo G. Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends Mol Med. 2011;17:584-593.
Vital M, Rud T, Rath S, Pieper DH, Schlüter D. Diversity of Bacteria Exhibiting Bile Acid-inducible 7α-dehydroxylation Genes in the Human Gut. Comput Struct Biotechnol J. 2019;17:1016-1019. doi: 10.1016/j.csbj.2019.07.012.
Voulgaris TA, Karagiannakis D, Hadziyannis E et al. Serum zonulin levels in patients with liver cirrhosis: Prognostic implications. World J Hepatol. 2021 Oct 27; 13 (10):1394-1404. doi: 10.4254/wjh.v13.i10.1394.
Wahlström A, Sayin SI, Marschall H-U, Bäckhed F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016;24(1):41-50. doi: 10.1016/j.cmet.2016.05.005.
Wang L, Llorente C, Hartmann P, Yang AM, Chen P, Schnabl B. Methods to determine intestinal permeability and bacterial translocation during liver disease. J. Immunol. Methods. 2015;421:44-53. doi: 10.1016/j.jim.2014.12.015.
Wenfeng Z, Yakun W, Di M, Jianping G, Chuanxin W, Chun H. Kupffer cells: increasingly significant role in nonalcoholic fatty liver disease. Ann Hepatol. 2014;13:489-495.
Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol. 2014;60:197-209.
Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut. 2001;48:206-211.
Wolowczuk I, Hennart B, Leloire A et al. Tryptophan metabolism activation by indoleamine 2,3-dioxygenase in adipose tissue of obese women: an attempt to maintain immune homeostasis and vascular tone. Am J Physiol-Regul Integr Comp Physiol. 2012;303(2):R135–R143. doi: 10.1152/ajpregu.00373.2011.
Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic Health: fermentation and Short Chain Fatty Acids. J Clin Gastroenterol. 2006;40(3):235-26. doi: 10.1097/00004836-200603000-00015.
Wood NJ. Liver: the liver as a firewall-clearance of commensal bacteria that have escaped from the gut. Nat Rev Gastroenterol Hepatol. 2014;11:391.
Wree A, Broderick L, Canbay A, Hoffman HM, Feldstein AE. From NAF.LD to NASH to cirrhosis-new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol. 2013;10:627-636.
Wu J, Meng Z, Jiang M, Zhang E, Trippler M et al. Toll-like receptor-induced innate immune responses in non-parenchymal liver cells are cell type-specific. Immunology. 2010;129:363-374. doi: 10.1111/j.1365-2567.2009.03179.x.
Yamada T, Inui A, Hayashi N, Fujimura M, Fujimiya M. Serotonin stimulates endotoxin translocation via 5-HT3 receptors in the rat ileum. Am J Physiol Gastrointest Liver Physiol. 2003;284(5):G782–G788. doi: 10.1152/ajpgi.00376.2002.
Yamazaki Y, Okawa K, Yano T, Tsukita S, Tsukita S. Optimized proteomic analysis on gels of cell-cell adhering junctional membrane proteins. Biochemistry. 2008;47:5378-5386.
Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R et al. Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hepatology. 2002;36:850-860.
Yuan J, Baker SS, Liu W, Alkhouri R, Baker RD et al. Endotoxemia unrequired in the pathogenesis of pediatric nonalcoholic steatohepatitis. J Gastroenterol Hepatol. 2014;29:1292-1298. doi: 10.1111/jgh.12510.
Zamparelli MS, Rocco A, Compare D, Nardone G. Faculty Opinions recommendation of the gut microbiota: A new potential driving force in liver cirrhosis and hepatocellular carcinoma. United Eur Gastroenterol J. 2017;5:944-953.
Zapater P, Francés R, González-Navajas JM, de la Hoz MA, Moreu R et al. Serum and ascitic fluid bacterial DNA: a new independent prognostic factor in noninfected patients with cirrhosis. Hepatology. 2008;48:1924-1931.
Zhai Y, Shen XD, O’Connell R, Gao F, Lassman C et al. Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J Immunol. 2004;173:7115-9. doi: 10.4049/jimmunol.173.12.7115.
Zhao Y, Chen F, Wu W, Sun M, Bilotta AJ et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 2018;11(3):752-762. doi: 10.1038/mi.2017.118.
Zhao Z-H, Xin F-Z, Xue Y, Hu Z, Han Y et al. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats. Exp Mol Med. 2019;51(9):1-14. doi: 10.1038/s12276-019-0304-5.
Zhao Z, Chen L, Zhao Y et al. Lactobacillus Plantarum NA136 Ameliorates Nonalcoholic Fatty Liver Disease by Modulating Gut Microbiota, Improving Intestinal Barrier Integrity, and Attenuating Inflammation. Appl Microbiol Biotechnol. 2020;104:5273-5282. doi: 10.1007/s00253-020-10633-9.
Zheng L, Kelly CJ, Battista KD et al. Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor–Dependent Repression of Claudin-2/the Journal of Immunology. J Immunol. 2017;199(8):2976-2984. doi: 10.4049/jimmunol.1700105.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Автори
Ця робота ліцензується відповідно до Creative Commons Attribution-NoDerivatives 4.0 International License.