DOI: https://doi.org/10.30978/MG-2019-4-67

Фіброгенез у підшлунковій залозі: сучасні уявлення

N. B. Gubergrits, N. V. Byelyayeva, A. Y. Klochkov, P. G. Fomenko, L. A. Yaroshenko, V. S. Rachmetova

Анотація


Панкреатичні зірчасті клітини становлять собою плюрипотентні клітини, розташовані між часточками підшлункової залози та ацинусів, що їх оточують. У стані спокою (неактивованому стані) панкреатичні зірчасті клітини містять у цитоплазмі запас вітаміну А (ретиноїдів), проміжні філаменти, десмін, гліофібрилярний кислий білок, нестин, нейроектодермальні білки, молекули адгезії нервових клітин і фактор росту нервів. Після активації панкреатичні зірчасті клітини можуть трансформуватися в міофібробластоподібні клітини. Вони втрачають ліпідні краплі з вітаміном A, в них зменшується вміст віментину, десміну. Підвищується проліферація, міграція, збільшується синтез внутрішньоклітинного матриксу. Доказові дані свідчать про те, що активовані панкреатичні зірчасті клітини є основним джерелом накопичення білка позаклітинного матриксу при патологічних станах, які призводять до фіброзу в підшлунковій залозі при хронічному панкреатиті та раку підшлункової залози. Проаналізовано сучасні дані літератури щодо механізмів фіброзу підшлункової залози та ролі зірчастих клітин у фіброгенезі. Наведено результати досліджень функції панкреатичних зірчастих клітин у нормі та за патології (при гострому і хронічному панкреатиті, раку підшлункової залози). Описано варіанти фіброзу підшлункової залози, механізми його розвитку при старінні. Узагальнено результати недавніх досліджень біологічних властивостей панкреатичних зірчастих клітин, зокрема їх участь у синтезі екзосом, процесах клітинного старіння, епітеліальної мезенхімальної трансформації, метаболізмі. Особливе значення має розробка антифібротичної терапії на основі теоретичних знань і результатів експериментальних досліджень.

Ключові слова


підшлункова залоза; зірчасті клітини; фіброз; позаклітинний матрикс; сигнальні шляхи; перспективи антифібротичної терапії

Посилання


Akhmedov A, Gaus OV. New aspects of formation and progression of pancreatic fibrosis in pancreatitis (Russian). Vestnik kluba pankreatologov [Herald of Pancreatic Club] (Russian). 2019;2.

КKorochanskaya NV, Rogal ML, Grishina IY. Surgical and medical prophylaxis of cancerous transformation of chronic pancreatitis (Russian). Gastro News (Russian). 2008;5:46-50.

Mayev IV, Kucheryavy YA. Dose-dependent polyenzyme therapy (Russian). Vrach [Doctor] (Russian). 2003;12:1-4.

Mehtiev SN, Grinevich VB, Brashchenkova AV, Kravchuk YA. Choice of polyenzyme preparations in patients with chronic pancreatitis and impaired glucose tolerance (Russian). Gastroenterologiya Sankt-Peterburga [Gastroenterology of St. Petersburg] (Russian). 2009;2-3:13-16.

Andoh A, Takaya H, Saotome T et al. Cytokine regulation of chemokine (IL-8, MCP-1, and RANTES) gene expression in human pancreatic periacinar myofibroblasts. Gastroenterology. 2000;119:211-219. DOI: 10.1053/gast.2000.8538

Apte M, Pirola R, Wilson J. The fibrosis of chronic pancreatitis: new insights into the role of pancreatic stellate cells. Antioxid Redox Signal. 2011;15:2711-2722. DOI: 10.1089/ars.2011.4079

Apte M, Pirola RC, Wilson JS. Pancreatic stellate cell: physiologic role, role in fibrosis and cancer. Curr Opin Gastroenterol. 2015;31:416-423. DOI: 10.1097/MOG.0000000000000196

Apte MV, Haber PS, Applegate TL et al. Periacinar stellate shaped cells in rat pancreas - identification, isolation, and culture. Gut. 1998;43:128-133. DOI: 10.1136/gut.43.1.128

Apte MV, Park S, Phillips PA et al. Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas. 2004;29:179-187. DOI: 10.1097/00006676-200410000-00002

Apte MV, Wilson JS, Lugea A et al. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology. 2013;144:1210-1219. DOI: 10.1053/j.gastro.2012.11.037

Apte MV, Wilson JS. Dangerous liaisons: pancreatic stellate cells and pancreatic cancer cells. J Gastroenterol Hepatol. 2012;27 (suppl. 2):69-74. DOI: 10.1111/j.1440-1746.2011.07000.x

Apte MV, Xu Z, Pothula S et al. Pancreatic cancer: the microenvironment needs attention too!. Pancreatology. 2015;15:S32-S38. DOI: 10.1016/j.pan.2015.02.013

Arumugam T, Brandt W, Ramachandran V et al. Trefoil factor 1 stimulates both pancreatic cancer and stellate cells and increases metastasis. Pancreas. 2011;40:815-822. DOI: 10.1097/MPA.0b013e31821f6927

Bachem MG, Schneider E, Gross H et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology. 1998;115:421-432. DOI: 10.1016/s0016-5085 (98)70209-4

Bachem MG, Schunemann M, Ramadani M et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology. 2005;128:907-921. DOI: 10.1053/j.gastro.2004.12.036

Bishr Omary M, Lugea A, Lowe A, Pandol S. The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest. 2007;117 (1):50-59. DOI: 10.1172/JCI30082

Blaine SA, Ray КС, Branch KM et al. Epidermal growth factor receptor regulates pancreatic fibrosis. Am J Physiol. Gastrointest Liver Physiol. 2009;297:G434-G441. DOI: 10.1152/ajpgi.00152.2009

Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol. 2012;24:645-651. DOI: 10.1016/j.ceb.2012.07.001

Bynigeri R, Jakkampudi A, Jangala R et al. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J Gastroenterol. 2017;23 (3):382-405. DOI: 10.3748/wjg.v23.i3.382.

Cabrera MC, Tilahun E, Nakles R et al. Human pancreatic cancer-associated stellate cells remain activated after in vivo chemoradiation. Front Oncol. 2014;4:102. DOI: 10.3389/fonc.2014.00102

Charrier A, Chen R, Chen L et al. Connective tissue growth factor (CCN2) and microRNA-21 are components of a positive feedback loop in pancreatic stellate cells (PSC) during chronic pancreatitis and are exported in PSC-derived exosomes. J Cell Commun Signal. 2014;8:147-156. DOI: 10.1007/s12079-014-0220-3

Chen H, Mrazek AA, Wang X et al. Design, synthesis, and characterization of novel apigenin analogues that suppress pancreatic stellate cell proliferation in vitro and associated pancreatic fibrosis in vivo. Bioorg Med Chem. 2014;22:3393-3404. DOI: 10.1016/j.bmc.2014.04.043

de la Iglesia-Garcia D, Vallejo-Senra N, Iglesias-Garcia J et al. Increased risk of mortality associated with pancreatic exocrine insufficiency in patients with chronic pancreatitis. J Clin Gastroenterol. 2018;52 (8):e63-e72. DOI: 10.1097/MCG.0000000000000917

Detlefsen S, Sipos B, Feyerabend B, Klöppel G. Fibrogenesis in alcoholic chronic pancreatitis: the role of tissue necrosis, macrophages, myofibroblasts and cytokines. Mod Pathol. 2006;19 (8):1019-1026. DOI: 10.1038/modpathol.3800613

Detlefsen S, Sipos B, Feyerabend B, Klöppel G. Pancreatic fibrosis associated with age and ductal papillary hyperplasia. Virchows Arch. 2005;447 (5):800-805. DOI: 10.1007/s00428-005-0032-1

Detlefsen S, Sipos B, Zhao J et al. Autoimmune pancreatitis: expression and cellular source of profibrotic cytokines and their receptors. Am J Surg. Pathol. 2008;32 (7):986-995. DOI: 10.1097/PAS.0b013e31815d2583

Dominguez-Munoz JE. (ed.) Clinical pancreatology for practicing gastroenterologists and surgeons. A Blackwell Publishing Company, 2005. 535 р.

Eisner A, Lange F, Fitzner В et al. Distinct antifibrogenic effects of erlotinib, sunitinib and sorafenib on rat pancreatic stellate cells. World J Gastroenterol. 2014;20:7914-7925. DOI: 10.3748/wjg.v20.i24.7914

Elsasser HP, Adler G, Kern HF. Time course and cellular source of pancreatic regeneration following acute pancreatitis in the rat. Pancreas. 1986;1:421-429. DOI: 10.1097/00006676-198609000-00006

Emmrich J, Weber I, Sparmann GH et al. Activation of pancreatic stellate cells in experimental chronic pancreatitis in rats. Gastroenterology. 2000;118. A166. DOI: 10.1016/s0016-5085 (00)82740-7

Erkan M, Michalski CW, Rieder S et al. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol. 2008;6:1155-1161. DOI: 10.1016/j.cgh.2008.05.006

Fitzner B, Muller S, Walther M et al. Senescence determines the fate of activated rat pancreatic stellate cells. J Cell Mol Med. 2012;16:2620-2630. DOI: 10.1111/j.1582-4934.2012.01573.x

Friess H, Zhu ZW, di Mola FF et al. Nerve growth factor and its high-affinity receptor in chronic pancreatitis. Ann Surg. 1999;230:615-624. DOI: 10.1097/00000658-199911000-00002

Fukui H, Brauner B, Bode JC et al. Plasma endotoxin concentrations in patients with alcoholic and non alcoholic liver disease: reevaluation with an improved chromogenie assay. J Hepatol. 1991;12:162-169. DOI: 10.1016/0168-8278 (91)90933-3

Gao X, Cao Y, Staloch DA et al. Bone morphogenetic protein signaling protects against cerulein-induced pancreatic fibrosis. PLoS ONE. 2014;9. e89114. DOI: 10.1371/journal.pone.0089114

Gibo J, Ito T, Kawabe К et al. Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity. Lab Invest. 2005;85:75-89. DOI: 10.1038/labinvest.3700203

Gómez JA, Molero X, Vaquero E et al. Vitamin E attenuates biochemical and morphological features associated with development of chronic pancreatitis. Am J Physiol. Gastrointest Liver Physiol. 2004;287 (1):G162-169. DOI: 10.1152/ajpgi.00333.2003

Gryshchenko O, Gerasimenko JV, Gerasimenko OV et al. Ca2+ signals mediated by bradykinin type 2 receptors in normal pancreatic stellate cells can be inhibited by specific Ca2+ channel blockade. J Physiol. 2016;594. –Р. 281-293. DOI: 10.1113/JP271468

Gukovskaya AS, Mouria M, Gukovsky I et al. Ethanol metabolism and transcription factor activation in pancreatic acinar cells in rats. Gastroenterology. 2002;122:106-118. DOI: 10.1053/gast.2002.30302

Gukovsky I, Lugea A, Shahsahebi M et al. A rat model reproducing key pathological responses of alcoholic chronic pancreatitis. Am J Physiol. Gastrointest Liver Physiol. 2008;294:G68-G79. DOI: 10.1152/ajpgi.00006.2007

Haber P, Keogh G, Apte M et al. Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am J Pathol. 1999;155:1087-1095. DOI: 10.1016/S0002-9440 (10)65211-X

Hamada S, Masamune A, Takikawa T et al. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells. Biochem Biophys Res Commun. 2012;421:349-354. DOI: 10.1016/j.bbrc.2012.04.014

Hennigs JK, Seiz O, Spiro J et al. Molecular basis of P2-receptor-mediated calcium signaling in activated pancreatic stellate cells. Pancreas. 2011;40:740-746. DOI: 10.1097/MPA.0b013e31821b5b68

Hu Y, Wan R, Yu G et al. Imbalance of Wnt/Dkk negative feedback promotes persistent activation of pancreatic stellate cells in chronic pancreatitis. PLoS ONE. 2014;9. e95145. DOI: 10.1371/journal.pone.0095145

Hughes CB, Gaber LW, Mohey el-Din AB et al. Inhibition of TNF alpha improves survival in an experimental model of acute pancreatitis. Am Surg. 1996;62:8-13. PMID: 8540653

Ikejiri N. The vitamin А-storing cells in the human and rat pancreas. Kurume Med J. 1990;37. –Р. 67-81. DOI: 10.2739/kurumemedj.37.67

Ikenaga N, Ohuchida K, Mizumoto К et al. CD10+ pancreatic stellate cells enhance the progression of pancreatic cancer. Gastroenterology. 2010;139:1041-1051. DOI: 10.1053/j.gastro.2010.05.084

Ishiwatari H, Sato Y, Murase К et al. Treatment of pancreatic fibrosis with siRNA against a collagen- specific chaperone in vitamin A-coupled liposomes. Gut. 2012;62:1328-1339. DOI: 10.1136/gutjnl-2011-301746

Jaster R, Sparmann G, Emmrich J et al. Extracellular signal regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells. Gut. 2002;51:579-584. DOI: 10.1136/gut.51.4.579

Jaster R. Molecular regulation of pancreatic stellate cell function. Molecular Cancer. 2004;3:26. DOI: 10.1186/1476-4598-3-26

Karger A, Fitzner B, Brock P et al. Molecular insights into connective tissue growth factor action in rat pancreatic stellate cells. Cell Signal. 2008;20:1865-1872. DOI: 10.1016/j.cellsig.2008.06.016

Kikuta К, Masamune A, Hamada S et al. Pancreatic stellate cells reduce insulin expression and induce apoptosis in pancreatic beta-cells. Biochem Biophys Res Commun. 2013;433:292-297. DOI: 10.1016/j.bbrc.2013.02.095

Kikuta К, Masamune A, Watanabe T et al. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Biophys Res Commun. 2010;403:380-384. DOI: 10.1016/j.bbrc.2010.11.040

Kloppel G. Pathology of chronic pancreatitis and pancreatic pain. Acta Chir Scand. 1990;156:261-265. DOI: 10.1007/978-3-642-71128-2_21

Kon A, Tando Y, Yanagimachi M et al. The study on the treatment of pancreatic steatorrhea and pancreatic diabetes for patients with pancreatic insufficiency. Abstracts of Papers Submitted to the Joint 40th Anniversary Meeting of American Pancreatic Association and Japan Pancreas Society, Honolulu (Hawaii), 2009. Pancreas. 2009;Vol.38, N8:1019.

Kordes C, Sawitza I, Haussinger D. Hepatic and pancreatic stellate cells in focus. Biol Chem. 2009;390. –Р. 1003-1012. DOI: 10.1515/BC.2009.121

Kuno A, Yamada T, Masuda K et al. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology. 2003;124 (4):1010-9. DOI: 10.1053/gast.2003.50147

Lu XL, Dong XY, Fu YB et al. Protective effect of salvianolic acid В on chronic pancreatitis induced by trinitrobenzene sulfonie acid solution in rats. Pancreas. 2009;38:71-77. DOI: 10.1097/mpa.0b013e3181855d0d

Marrache F, Tu SP, Bhagat G et al. Overexpression of interleukin-lbeta in the murine pancreas results in chronic pancreatitis. Gastroenterology. 2008;135:1277-1287. DOI: 10.1053/j.gastro.2008.06.078

Masamune A, Kikuta K, Satoh M et al. Rho kinase inhibitors block activation of pancreatic stellate cells. Br J Pharmacol. 2003;140:1292-1302. DOI: 10.1038/sj.bjp.0705551

Masamune A, Kikuta K, Watanabe T et al. Pancreatic stellate cells express Toll-like receptors. J Gastroenterol. 2008;43:352-362. DOI: 10.1007/s00535-008-2162-0

Masamune A, Nakano E, Hamada S et al. Alteration of the microRNA expression profile during the activation of pancreatic stellate cells. Scand J Gastroenterol. 2014;49. –Р. 323-331. DOI: 10.3109/00365521.2013.876447

Masamune A, Satoh M, Kikuta К et al. Activation of JAK-STAT pathway is required for platelet-derived growth factor-induced proliferation of pancreatic stellate cells. World J Gastroenterol. 2005;11:3385-3391. DOI: 10.3748/wjg.v11.i22.3385

Masamune A, Shimosegawa T. Signal transduction in pancreatic stellate cells. J Gastroenterol. 2009;44:249-260. DOI: 10.1007/s00535-009-0013-2

Masamune A, Suzuki N, Kikuta К et al. Curcumin blocks activation of pancreatic stellate cells. J Cell Biochem. 2006;97:1080-1093. DOI: 10.1002/jcb.20698

Mato E, Lucas M, Petriz J et al. Identification of a pancreatic stellate cell population with properties of progenitor cells: new role for stellate cells in the pancreas. Biochem J. 2009;421. –Р. 181-191. DOI: 10.1042/BJ20081466

Matsumura N, Ochi K, Ichimura M et al. Study on free radicals and pancreatic fibrosis - pancreatic fibrosis induced by repeated injections of superoxide dismutase inhibitor. Pancreas. 2001;22:53-57. DOI: 10.1097/00006676-200101000-00009

McCarroll J, Phillips P, Santucci N et al. Alcoholic pancreatic fibrosis: role of the phosphatidylinositol-3 kinase (PI3-K) and protein kinase С (PKC) pathways in pancreatic stellate cells. J Gastroenterol Hepatol. 2004;29:347. DOI: 10.1097/00006676-200411000-00087

McCarroll JA, Phillips PA, Kumar RK et al. Pancreatic stellate cell migration: role of the phosphatidylinositol 3-kinase (РІЗ-kinase) pathway. Biochem Pharmacol. 2004;67:1215-1225. DOI: 10.1016/j.bcp.2003.11.013

McCarroll JA, Phillips PA, Park S et al. Pancreatic stellate cell activation by ethanol and acetaldehyde: is it mediated by the mitogen-activated protein kinase signaling pathway?. Pancreas. 2003;27. –Р. 150-160. DOI: 10.1097/00006676-200308000-00008

McCarroll JA, Phillips PA, Santucci N et al. Vitamin A induces quiescence in culture-activated pancreatic stellate cells - potential as an anti-fibrotic agent?. Pancreas. 2003;27:396.

Menke A, Yamaguchi H, Gress TM et al. Extracellular matrix is reduced by inhibition of transforming growth factor betal in pancreatitis in the rat. Gastroenterology. 1997;113:295-303. DOI: 10.1016/s0016-5085 (97)70107-0

Michalski CW, Maier M, Erkan M et al. Cannabinoids reduce markers of inflammation and fibrosis in pancreatic stellate cells. PLoS One. 2008;27. 3 (2):e1701. DOI: 10.1371/journal.pone.0001701

Motoo Y. Antiproteases in the treatment of chronic pancreatitis. JOP. 2007;8(suppl.4):533-537. PMID: 17625311

Nagashio Y, Ueno H, Imamura M et al. Inhibition of transforming growth factor beta decreases pancreatic fibrosis and protects the pancreas against chronic injury in mice. Lab Invest. 2004;84 (12):1610-1618. DOI: 10.1038/labinvest.3700191

Neuschwander-Tetri BA, Burton FR, Presti ME et al. Repetitive self-limited acute pancreatitis induces pancreatic fibrogenesis in the mouse. Dig Dis Sci. 2000;45:665-674. DOI: 10.1023/a:1005423122127

Niina Y, Ito T, Oono T et al. A sustained prostacyclin analog, ONO–1301, attenuates pancreatic fibrosis in experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Pancreatology. 2014;14:201-210. DOI: 10.1016/j.pan.2014.02.009

Ohashi K, Kim JH, Нага H et al. WBN/Kob rats. A new spontaneously occurring model of chronic pancreatitis. Int J Pancreatol. 1990;6:231-247. PMID: 1698893

Ohnishi H, Miyata T, Yasuda H et al. Distinct roles of Smad2-, Smad3-, and ERK-dependent pathways in transforming growth factor-beta 1 regulation of pancreatic stellate cellular functions. J Biol Chem. 2004;279:8873-8878. DOI: 10.1074/jbc.M309698200

Ozdemir ВС, Pentcheva-Hoang T, Carstens JL et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25:719-734. DOI: 10.1016/j.ccr.2014.04.005

Pancreas - pathological practice and research / Ed. K. Suda. Basel. et al. Karger, 2007:318.

Pancreatitis: medical and surgical management / Eds.: D. B. Adams. et al. Chichester: Wiley Blackwell, 2017:326.

Pancreatology: a clinical casebook / Eds.: T. B. Gardner, K. D. Smith. Cham (Switzerland): Springer International Publishing AG, 2017:193.

Patel M, Collins J, Benyon C, Fine D. Pancreatic stellate cells express IGF-1 and insulin receptors: implications for treatment of pancreatic fibrosis / 42nd European Pancreatic Club (EPC) meeting. Pancreatology. 2010;Vol.10:272.

Pereda J, Sabater L, Cassinello N et al. Effect of simultaneous inhibition of TNF-alpha production and xanthine oxidase in experimental acute pancreatitis: the role of mitogen activated protein kinases. Ann Surg. 2004;240:108-116. DOI: 10.1097/01.sla.0000129343.47774.89

Phillips PA, McCarroll JA, Park S et al. Rat pancreatic stellate cells secrete matrix metalloproteinases - implications for extracellular matrix turnover. Gut. 2003;52:275-282. DOI: 10.1136/gut.52.2.275

Phillips PA, Yang L, Shulkes A et al. Pancreatic stellate cells produce acetylcholine and may play a role in pancreatic exocrine secretion. Proc Natl Acad Sci USA. 2010;107:17397-17402. DOI: 10.1073/pnas.1000359107

Pothula SP, Xu Z, Goldstein D et al. Hepatocyte growth factor inhibition: a novel therapeutic approach in pancreatic cancer. Br J Cancer. 2016;114:269-280. DOI: 10.1038/bjc.2015.478

Pothula SP, Xu Z, Goldstein D et al. Key role of pancreatic stellate cells in pancreatic cancer. Cancer Lett. 2016;381:194-200. DOI: 10.1016/j.canlet.2015.10.035

Reding T, Bimmler D, Perren A et al. A selective COX-2 inhibitor suppresses chronic pancreatitis in an animal model (WBN/Kob rats): significant reduction of macrophage infiltration and fibrosis. Gut. 2006;55 (8):1165-1173. DOI: 10.1136/gut.2005.077925

Rhim AD, Oberstein PE, Thomas DH et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25:735-747. DOI: 10.1016/j.ccr.2014.04.021

Riopel MM, Li J, Liu S et al. β1 integrin-extracellular matrix interactions are essential for maintaining exocrine pancreas architecture and function. Lab Invest. 2012;93:31-40. DOI: 10.1038/labinvest.2012.147

Schneider E, Schmid-Kotsas A, Zhao J et al. Identification of mediators stimulating proliferation and matrix synthesis of rat pancreatic stellate cells. Am J Physiol. Cell Physiol. 2001;281:C532-C543. DOI: 10.1152/ajpcell.2001.281.2.C532

Shek FW, Benyon RC, Walker FM et al. Expression of transforming growth factor- (31 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol. 2002;160:1787-1798. DOI: 10.1016/s0002-9440 (10)61125-x

Shen J, Wan R, Hu G et al. miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro. Pancreatology. 2012;12:91-99. DOI: 10.1016/j.pan.2012.02.008

Sherman MH, Yu RT, Engle DD et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159:80-93. DOI: 10.1016/j.cell.2014.08.007

Shimizu K, Kobayashi M, Tahara J et al. Cytokines and peroxisome proliferator-activated receptor gamma ligand regulate phagocytosis by pancreatic stellate cells. Gastroenterology. 2005;128:2105-2118. DOI: 10.1053/j.gastro.2005.03.025

Shimizu K, Shiratori K, Kobayashi M et al. Troglitazone inhibits the progression of chronic pancreatitis and the profibrogenic activity of pancreatic stellate cells via a PPAR gamma-independent mechanism. Pancreas. 2004;29:67-74. DOI: 10.1097/00006676-200407000-00058

Shinozaki S, Ohnishi H, Hama К et al. Indian hedgehog promotes the migration of rat activated pancreatic stellate cells by increasing membrane type-1 matrix metalloproteinase on the plasma membrane. J Cell Physiol. 2008;216:38-46. DOI: 10.1002/jcp.21372

Sparmann G, Kruse ML, Hofmeister-Mielke N et al. Bone marrow-derived pancreatic stellate cells in rats. Cell Res. 2010;20:288-298. DOI: 10.1038/cr.2010.10

Suzuki N, Masamune A, Kikuta К et al. Ellagic acid inhibits pancreatic fibrosis in male Wistar Bonn/Kobori rats. Dig Dis Sci. 2009;54:802-810. DOI: 10.1007/s10620-008-0423-7

The Pancreas: An integrated textbook of basic science, medicine and surgery / Ed. H. G. Beger, A. L. Warshaw, R. H. Hruban. et al. Oxford: Willey Blackwell, 2018:1173.

Tsang SW, Bian ZX. Anti-fibrotic and anti-tumorigenic effects of rhein, a natural anthraquinone derivative, in mammalian stellate and carcinoma cells. Phytother Res. 2015;29:407-414. DOI: 10.1002/ptr.5266

Tsukamoto H, Towner SJ, Yu GS et al. Potentiation of ethanol-induced pancreatic injury by dietary fat. Induction of chronic pancreatitis by alcohol in rats. Am J Pathol. 1988;131:246-257. PMID: 3358454

Uchida M, Ito T, Nakamura T et al. Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas and acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist. Pancreas. 2014;43:708-719. DOI: 10.1097/MPA.0000000000000109

Uesugi T, Froh M, Gabele E et al. Contribution of angiotensin II to alcohol-induced pancreatic fibrosis in rats. J Pharmacol Exp Ther. 2004;311:921-928. DOI: 10.1124/jpet.104.071324

van Westerloo DJ, Florquin S, de Boer AM et al. Therapeutic effects of troglitazone in experimental chronic pancreatitis in mice. Am J Pathol. 2005;166 (3):721-728. DOI: 10.1016/S0002-9440 (10)62293-6

Vonlaufen A, Phillips P, Xu ZH et al. T1835 Alcohol withdrawal promotes regression of pancreatic fibrosis via induction of pancreatic stellate cell (PSC apoptosis). Gut. 2011;60:238-246. DOI: 10.1016/s0016-5085 (09)62716-5

Vonlaufen A, Phillips PA, Xu ZH et al. Isolation of quiescent human pancreatic stellate cells; a useful in vitro tool to study hPSC biology. Pancreatology. 2010;10:434-443. DOI: 10.1159/000260900

Vonlaufen A, Xu ZH, Joshi S et al. Bacterial endotoxin - a trigger factor for alcoholic pancreatitis? Findings of a novel physiologically relevant model. Gastroenterology. 2007;133:1293-1303. DOI: 10.1097/00006676-200611000-00235

Wake K. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int Rev Cytol. 1980;66:303-353. DOI: 10.1016/s0074-7696 (08)61977-4

Wang LM, Silva MA, D’Costa Z et al. The prognostic role of desmoplastic stroma in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:4183-4194. DOI: 10.18632/oncotarget.6770

Watanabe T, Masamune A, Kikuta К et al. Bone marrow contributes to the population of pancreatic stellate cells in mice. Am J Physiol. Gastrointest Liver Physiol. 2009;297:G1138-G1146. DOI: 10.1152/ajpgi.00123.2009

Watari N, Hotta Y, Mabuchi Y. Morphological studies on a vitamin А-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin A administration. Okajimas Folia Anatpn. 1982;58:837-858. DOI: 10.2535/ofaj1936.58.4-6_837

Witteck L, Jaster R. Trametinib and dactolisib but not regorafenib exert antiproliferative effects on rat pancreatic stellate cells. Hepatobil Pancreat Dis Int. 2015;14:642-650. DOI: 10.1016/s1499-3872 (15)60032-7

Won JH, Zhang Y, Ji В et al. Phenotypic changes in mouse pancreatic stellate cell Ca signaling events following activation in culture and in a disease model of pancreatitis. Mol Biol Cell. 2011;22:421-436. DOI: 10.1091/mbc.e10-10-0807

Xiao W, Jiang W, Shen J et al. Retinoic acid ameliorates pancreatic fibrosis and inhibits the activation of pancreatic stellate cells in mice with experimental chronic pancreatitis via suppressing the Wnt/beta- catenin signaling pathway. PLoS ONE. 2015;10. e0141462. DOI: 10.1371/journal.pone.0141462

Xu W, Li W, Wang Y et al. Regenerating islet-derived protein 1 inhibits the activation of islet stellate cells isolated from diabetic mice. Oncotarget. 2015;6:37054-37065. DOI: 10.18632/oncotarget.6163

Xu Z, Vonlaufen A, Phillips PA et al. Role of pancreatic stellate cells in pancreatic cancer metastasis. Am J Pathol. 2010;177:2585-2596. DOI: 10.2353/ajpath.2010.090899

Xue R, Jia K, Wang J et al. A rising star in pancreatic diseases: pancreatic stellate cells. Front Physiol. 2018;9:754. doi: 10.3389/fphys.2018.00754.

Yamada T, Kuno A, Masuda K et al. Candesartan, an angiotensin II receptor antagonist, suppresses pancreatic inflammation and fibrosis in rats. J Pharmacol Exp Ther. 2003;307 (1):17-23. DOI: 10.1124/jpet.103.053322

Yoshida S, Ujiki M, Ding XZ et al. Pancreatic stellate cells (PSCs) express cyclooxygenase-2 (COX-2) and pancreatic cancer stimulates COX-2 in PSCs. Mol Cancer. 2005;4:27. DOI: 10.1186/1476-4598-4-27

Zechner D, Knapp N, Bobrowski A et al. Diabetes increases pancreatic fibrosis during chronic inflammation. Exp Biol Med (Maywood, NJ). 2014;239:670-676. DOI: 10.1177/1535370214527890

Zha M, Xu W, Jones PM. et al. Isolation and characterization of human islet stellate cells. Exp Cell Res. 2016;314:61-66. DOI: 10.1016/j.yexcr.2015.11.002

Zhang H, Wu H, Guan J et al. Paracrine SDF-lalpha signaling mediates the effects of PSCs on GEM chemoresistance through an IL-6 autocrine loop in pancreatic cancer cells. Oncotarget. 2015;6:3085-3097. DOI: 10.18632/oncotarget.3099

Zhang X, Cui Y, Fang L, Li F. Chronic high-fat diets induce oxide injuries and fibrogenesis of pancreatic cells in rats. Pancreas. 2008;37 (3):e31-38. DOI: 10.1097/MPA.0b013e3181744b50.

Zimmermann A, Gloor B, Kappeler A et al. Pancreatic stellate cells contribute to regeneration early after acute necrotising pancreatitis in humans. Gut. 2002;51:574-578. DOI: 10.1136/gut.51.4.574




© Сучасна гастроентерологія, 2020
© ТОВ «ВІТ-А-ПОЛ», 2020