DOI: https://doi.org/10.30978/MG-2018-6-72

Мікро-РНК: властивості та роль у розвитку та прогресуванні неалкогольної жирової хвороби печінки

G. D. Fadieienko, T. L. Mozhyna, I. E. Kushnir, V. M. Chernova, T. A. Solomentseva

Анотація


Мікро-РНК — невеликі некодуючі РНК, які регулюють різноманітні фізіологічні та патологічні процеси шляхом модуляції експресії генів на посттранскрипційному рівні. Доведено роль мікро-РНК у розвитку та прогресуванні захворювань печінки, зокрема неалкогольної жирової хвороби печінки. Обговорюється можливість використання мікро-РНК як діагностичних маркерів. З великої кількості мікро-РНК найбільшу участь у розвитку неалкогольної жирової хвороби печінки беруть miR-34a, miR-122 та miR-155.


Ключові слова


неалкогольна жирова хвороба печінки; мікро-РНК; діагностичні біомаркери; стеатоз; фіброз

Повний текст:

PDF (Русский)

Посилання


Akuta N, Kawamura Y, Suzuki F et al. Impact of circulating miR-122 for histological features and hepatocellular carcinoma of nonalcoholic fatty liver disease in Japan. Hepatol Int. 2016;N 10:647-656. DOI: 10.1007/s12072-016-9729-2].

Baffy G. MicroRNAs in Nonalcoholic Fatty Liver Disease. J Clinical Medicine. 2015;N 4:1977-1988. DOI:10.3390/jcm4121953.

Bandiera S, Pfeffer S, Baumert T, Zeisel M. miR-122-a key factor and therapeutic target in liver disease. J Hepatol. 2015;N 62:448-457. DOI: 10.1016/j.jhep.2014.10.004].

Becker P, Rau M, Schmitt J et al. Performance of Serum microRNAs -122, -192 and -21 as Biomarkers in Patients with Non-Alcoholic Steatohepatitis. PLoS One. 2015;N 10. e0142661. DOI: 10.1371/journal.pone.0142661].

Braza-Boïls A, Marí-Alexandre J, Molina P et al. Deregulated hepatic microRNAs underlie the association between non-alcoholic fatty liver disease and coronary artery disease. Liver Int. 2016;N 36:1221-1229. DOI: 10.1111/liv.13097].

Chakraborty C, Sharma AR., Sharma G et al. Therapeutic miRNA and siRNA: Moving from Bench to Clinic as Next Generation Medicine. Mol Ther Nucleic Acids. 2017;N 8:132-143. DOI: 10.1016/j.omtn.2017.06.005].

Chen YP, Jin X, Xiang Z et al. Circulating microRNAs as potential biomarkers for alcoholic steatohepatitis. Liver Int. 2013;N 33 (8):1257-1265.

Csak T, Bala S, Lippai D et al. MicroRNA-155 Deficiency attenuates liver steatosis and fibrosis without reducing inflammation in a mouse model of steatohepatitis. PLoS One. 2015;N 10. e0129251. DOI: 10.1371/journal.pone.0129251].

Escalona-Nandez I, Guerrero-Escalera D, Estanes- Hernandez A et al. The activation of peroxisome proliferator-activated receptor gamma is regulated by Kruppel-like transcription factors 6 & 9 under steatotic conditions. Biochem Biophys Res Comm. 2015;N 458 (4):751-756.

Guo XY, Sun F, Chen JN. et al. circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling. World J Gastroenterol. 2018;N 24:323-337. DOI: 10.3748/wjg.v24.i3.323].

Guo Y, Xiong Y, Sheng Q et al. A micro-RNA expression signature for human NAFLD progression. J Gastroenterol. 2016;N 51:1022-1030. DOI:10.1007/s00535-016-1178-0].

Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015;N 87:3-14. DOI: 10.1016/j.addr.2015.05.001].

Hyun J, Jung Y. MicroRNAs in liver fibrosis: Focusing on the interaction with hedgehog signaling. World J Gastroenterol. 2016;N 22:6652-6662. DOI: 10.3748/wjg.v22.i29.6652].

Kwiecinski M, Elfimova N, Noetel A et al. Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic stellate cells is inhibited by miR-29. Lab Invest. 2012;N 92 (7):978-987.

Latorre J, Moreno-Navarrete J, Mercader J et al. Decreased lipid metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD. Int J Obes (Lond). 2017;N 41:620-630. 28119530 DOI: 10.1038/ijo.2017.21].

Lehmann M, Pirinen E, Mirsaidi A et al. ARTD1-induced poly-ADP-ribose formation enhances ppargamma ligand binding and co-factor exchange. Nucl Acids Res. 2015;N 43 (1):129-142.

Leti F, Malenica I, Doshi M et al. High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease-related fibrosis. Transl Res. 2015;N 166:304-314. DOI: 10.1016/j.trsl.2015.04.014].

Liu X, Pan Q, Zhang R et al. Disease-specific miR-34a as diagnostic marker of non-alcoholic steatohepatitis in a Chinese population. World J Gastroenterol. 2016;N 22:9844-9852. DOI: 10.3748/wjg.v22.i44.9844].

Loosen S, Schueller F, Trautwein C et al. Role of circulating microRNAs in liver diseases. World. J Hepatol. 2017;N 9:586-594. DOI: 10.4254/wjh.v9.i12.586].

Miller A, Gilchrist D, Nijjar J et al. MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS One. 2013;N 8. e72324. DOI: 10.1371/journal.pone.0072324].

Pawlak M, Lefebvre P, Staels B. Molecular mechanism of paralpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;N 62 (3):720-733.

Pirola C, Fernández Gianotti T, Castaño G et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum noncoding RNAs to liver histology and disease pathogenesis. Gut. 2015;N 64:800-812. DOI: 10.1136/gutjnl-2014-306996].

Praveenraj P, Gomes R, Kumar S et al. Prevalence and predictors of non-alcoholic fatty liver disease in morbidly obese south indian patients undergoing bariatric surgery. Obes Surg. 2015;N 25:2078-2087. DOI:10.1007/s11695-015-1655-1]

Regulus Therapeutics I. RG-125 (AZD4076), a microRNA therapeutic targeting microRNA 103/107 for the treatment of NASH in patients with type 2 diabetes/Pre-Diabetes, selected as clinical candidate by AstraZeneca. Press release 2015.

Rius B, Titos E, Moran-Salvador E et al. Resolvin d1 primes the resolution process initiated by calorie restriction in obesity-induced steatohepatitis. FASEB J. 2014;N 28 (2):836-848.

Rupaimoole R, Slack F. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;N 16:203-222. DOI: 10.1038/nrd.2016.246].

Salvoza N, Klinzing D, Gopez-Cervantes J, Baclig M. Association of circulating serum miR-34a and miR-122 with dyslipidemia among patients with non-alcoholic fatty liver disease. PLoS One. 2016;N 11. e0153497. DOI:10.1371/journal.pone.0153497].

Su Q, Kumar V, Sud N, Mahato RI. MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis. Adv Drug Deliv Rev. 2018;N 129:54-63. DOI: 10.1016/j.addr.2018.01.009].

Szabo G, Csak T. Role of microRNAs in NAFLD/NASH. Dig Dis Sci. 2016;N 61:1314-1324. DOI: 10.1007/s10620-015-4002-4].

Tan J, Tong B, Wu Y, Xiong W. MicroRNA-29 mediates TGFbeta1-induced extracellular matrix synthesis by targeting wnt/beta-catenin pathway in human orbital fibroblasts. Int J Clin Exp Pathol. 2014;N 7 (11):7571-7577.

Tan Y, Ge G, Pan T et al. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS One. 2014;N 9. –e105192. DOI: 10.1371/journal.pone.0105192].

Torres J, Novo-Veleiro I, Manzanedo L et al. Role of microRNAs in alcohol-induced liver disorders и non-alcoholic fatty liver disease. World J Gastroenterol. 2018;N 24 (36):4104-4118. DOI: 10.3748/wjg.v24.i36.4104.

Vega-Badillo J, Gutiérrez-Vidal R, Hernández-Pérez H et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int. 2016;N 36:1383-1391. DOI: 10.1111/liv.13109].

Vienberg S, Geiger J, Madsen S, Dalgaard L. MicroRNAs in metabolism. Acta Physiol (Oxf). 2017;N 219. –P. 346-361. DOI: 10.1111/apha.12681].

Virtue A, Johnson C, Lopez-Pastraña J et al. MicroRNA-155 Deficiency leads to decreased atherosclerosis, increased white adipose tissue obesity, and nonalcoholic fatty liver disease: A novel mouse model of obesity paradox. J Biol Chem. 2017;N 292:1267-1287. DOI: 10.1074/jbc.M116.739839].

Wang L, Zhang N, Wang Z et al. Decreased MiR-155 level in the peripheral blood of non-alcoholic fatty liver disease patients may serve as a biomarker and may influence LXR activity. Cell Physiol Biochem. 2016;N 39:2239-2248. DOI: 10.1159/000447917].

Wang Y, Liu Z, Zou W et al. Molecular regulation of miRNAs and potential biomarkers in the progression of hepatic steatosis to NASH. Biomark Med. 2015;N 9 (11):1189-200. DOI: 10.2217/bmm.15.70.

Wu G, Rui C, Chen J et al. MicroRNA-122 inhibits lipid droplet formation and hepatic triglyceride accumulation via Yin Yang 1. Cell Physiol Biochem. 2017;N 44:1651-1664. DOI: 10.1159/000485765].

Yamada H, Ohashi K, Suzuki K et al. Longitudinal study of circulating miR-122 in a rat model of non-alcoholic fatty liver disease. Clin Chim Acta. 2015;N 446:267-271. DOI: 10.1016/j.cca.2015.05.002].

Yamada H, Suzuki K, Ichino N et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta. 2013;N 424:99-103. DOI: 10.1016/j.cca.2013.05.021].

Zhou J, Wang K, Wu W et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A. 2011;108 (25):10355-60. DOI: 10.1073/pnas.1107052108.

Zhou S, Jin J, Wang J.. et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets и challenges. Acta Pharmacologica Sinica. 2018;N 39:1073-1084.




© Сучасна гастроентерологія, 2019
© ТОВ «ВІТ-А-ПОЛ», 2019